Exams
Test Series
Previous Year Papers
JEE Main Previous Year Question Paper JEE Advanced Previous Year Papers NEET Previous Year Question Paper CUET Previous Year Papers COMEDK UGET Previous Year Papers UP Polytechnic Previous Year Papers AP POLYCET Previous Year Papers TS POLYCET Previous Year Papers KEAM Previous Year Papers MHT CET Previous Year Papers WB JEE Previous Year Papers GUJCET Previous Year Papers ICAR AIEEA Previous Year Papers CUET PG Previous Year Papers JCECE Previous Year Papers Karnataka PGCET Previous Year Papers NEST Previous Year Papers KCET Previous Year Papers LPUNEST Previous Year Papers AMUEEE Previous Year Papers IISER IAT Previous Year Papers Bihar Diploma DECE-LE Previous Year Papers NPAT Previous Year Papers JMI Entrance Exam Previous Year Papers PGDBA Exam Previous Year Papers AP ECET Previous Year Papers PU CET Previous Year Papers GPAT Previous Year Papers CEED Previous Year Papers AIAPGET Previous Year Papers JKCET Previous Year Papers HPCET Previous Year Papers CG PAT Previous Year Papers SRMJEEE Previous Year Papers BCECE Previous Year Papers AGRICET Previous Year Papers TS PGECET Previous Year Papers MP PAT Previous Year Papers IIT JAM Previous Year Papers CMC Vellore Previous Year Papers ACET Previous Year Papers TS EAMCET Previous Year Papers NATA Previous Year Papers AIIMS MBBS Previous Year Papers BITSAT Previous Year Papers JEXPO Previous Year Papers HITSEEE Previous Year Papers AP EAPCET Previous Year Papers UCEED Previous Year Papers CG PET Previous Year Papers OUAT Previous Year Papers VITEEE Previous Year Papers
Syllabus
JEE Main Syllabus JEE Advanced Syllabus NEET Syllabus CUET Syllabus COMEDK UGET Syllabus UP Polytechnic JEECUP Syllabus AP POLYCET Syllabus TS POLYCET Syllabus KEAM Syllabus MHT CET Syllabus WB JEE Syllabus OJEE Syllabus ICAR AIEEA Syllabus CUET PG Syllabus NID Syllabus JCECE Syllabus Karnataka PGCET Syllabus NEST Syllabus KCET Syllabus UPESEAT EXAM Syllabus LPUNEST Syllabus PUBDET Syllabus AMUEEE Syllabus IISER IAT Syllabus NPAT Syllabus JIPMER Syllabus JMI Entrance Exam Syllabus AAU VET Syllabus PGDBA Exam Syllabus AP ECET Syllabus GCET Syllabus CEPT Syllabus PU CET Syllabus GPAT Syllabus CEED Syllabus AIAPGET Syllabus JKCET Syllabus HPCET Syllabus CG PAT Syllabus BCECE Syllabus AGRICET Syllabus TS PGECET Syllabus BEEE Syllabus MP PAT Syllabus MCAER PG CET Syllabus VITMEE Syllabus IIT JAM Syllabus CMC Vellore Syllabus AIMA UGAT Syllabus AIEED Syllabus ACET Syllabus TS EAMCET Syllabus PGIMER Exam Syllabus NATA Syllabus AFMC Syllabus AIIMS MBBS Syllabus BITSAT Syllabus BVP CET Syllabus JEXPO Syllabus HITSEEE Syllabus AP EAPCET Syllabus GITAM GAT Syllabus UPCATET Syllabus UCEED Syllabus CG PET Syllabus OUAT Syllabus IEMJEE Syllabus VITEEE Syllabus SEED Syllabus MU OET Syllabus
Books
Cut Off
JEE Main Cut Off JEE Advanced Cut Off NEET Cut Off CUET Cut Off COMEDK UGET Cut Off UP Polytechnic JEECUP Cut Off AP POLYCET Cut Off TNEA Cut Off TS POLYCET Cut Off KEAM Cut Off MHT CET Cut Off WB JEE Cut Off ICAR AIEEA Cut Off CUET PG Cut Off NID Cut Off JCECE Cut Off Karnataka PGCET Cut Off NEST Cut Off KCET Cut Off UPESEAT EXAM Cut Off AMUEEE Cut Off IISER IAT Cut Off Bihar Diploma DECE-LE Cut Off JIPMER Cut Off JMI Entrance Exam Cut Off PGDBA Exam Cut Off AP ECET Cut Off GCET Cut Off CEPT Cut Off PU CET Cut Off CEED Cut Off AIAPGET Cut Off JKCET Cut Off HPCET Cut Off CG PAT Cut Off SRMJEEE Cut Off TS PGECET Cut Off BEEE Cut Off MP PAT Cut Off VITMEE Cut Off IIT JAM Cut Off CMC Vellore Cut Off ACET Cut Off TS EAMCET Cut Off PGIMER Exam Cut Off NATA Cut Off AFMC Cut Off AIIMS MBBS Cut Off BITSAT Cut Off BVP CET Cut Off JEXPO Cut Off HITSEEE Cut Off AP EAPCET Cut Off GITAM GAT Cut Off UCEED Cut Off CG PET Cut Off OUAT Cut Off VITEEE Cut Off MU OET Cut Off
Latest Updates
Eligibility
JEE Main Eligibility JEE Advanced Eligibility NEET Eligibility CUET Eligibility COMEDK UGET Eligibility UP Polytechnic JEECUP Eligibility TNEA Eligibility TS POLYCET Eligibility KEAM Eligibility MHT CET Eligibility WB JEE Eligibility OJEE Eligibility ICAR AIEEA Eligibility CUET PG Eligibility NID Eligibility JCECE Eligibility Karnataka PGCET Eligibility NEST Eligibility KCET Eligibility LPUNEST Eligibility PUBDET Eligibility AMUEEE Eligibility IISER IAT Eligibility Bihar Diploma DECE-LE Eligibility NPAT Eligibility JIPMER Eligibility JMI Entrance Exam Eligibility AAU VET Eligibility PGDBA Exam Eligibility AP ECET Eligibility GCET Eligibility CEPT Eligibility PU CET Eligibility GPAT Eligibility CEED Eligibility AIAPGET Eligibility JKCET Eligibility HPCET Eligibility CG PAT Eligibility SRMJEEE Eligibility BCECE Eligibility AGRICET Eligibility TS PGECET Eligibility MP PAT Eligibility MCAER PG CET Eligibility VITMEE Eligibility IIT JAM Eligibility CMC Vellore Eligibility AIMA UGAT Eligibility AIEED Eligibility ACET Eligibility PGIMER Exam Eligibility CENTAC Eligibility NATA Eligibility AFMC Eligibility AIIMS MBBS Eligibility BITSAT Eligibility JEXPO Eligibility HITSEEE Eligibility AP EAPCET Eligibility GITAM GAT Eligibility UPCATET Eligibility UCEED Eligibility CG PET Eligibility OUAT Eligibility IEMJEE Eligibility SEED Eligibility MU OET Eligibility

Understanding Fisheye Lens: Types, Characteristics, and Applications

Last Updated on Jan 24, 2025
Download As PDF
IMPORTANT LINKS
Ray Optics and Optical Instruments
Properties and Applications of Concave Mirror Light Energy Visible Light UV Light Rays of Light Rectilinear Propagation Of Light Sources of Light Total Internal Reflection Snell’s Law Formula Dispersion Without Deviation Angle of Minimum Deviation Angle of Incidence Reflection of Light Reflection and Refraction of Light Solar Cooker "Absorption Refraction of Light Composition of Glass Difference Between Concave and Convex Mirror Uses of Convex Mirror Lava Lamp Experiment Derivation of Beer Lambert Law Relative Refractive Index Prism Law of Reflection Difference Between Reflection and Refraction Derivation of Prism Formula "Transparent Relation Between Critical Angle and Refractive Index Optical Bench Refractive Index Optical Density Translucent Materials Optics Pinhole Camera Periscope Optical Instruments Difference Between Mirror and Lens Compound Microscope Plane Mirror Concave Lens Mirror Equation Difference Between Light Microscope and Electron Microscope Toric Lens Convex Mirror Uses of Optical Fibre Lambert's Cosine Law Concave Mirrors Difference Between Concave and Convex Lens Uses of Concave Lens Simple Microscope Power of Lens Lens Aberration Derivation of Mirror Formula Uses of Convex Lens Convex Lens Derivation of Lens Maker Formula Uses of Concave Mirror Uses of Plane Mirrors Defects of Vision and their Correction Types of Microscope Kaleidoscope Uses of Microscope Power of Accommodation of the Eye Geometric Optics Difference Between Real Image and Virtual Image Difference Between Simple and Compound Microscope Bifocal Lens Types of Mirror Focal Length of a Plane Mirror Focus of a Concave Mirror Non-Optical Low Vision Aids Optical Low Vision Aids Colour of Sunlight Compound Lenses Spherical Mirrors Focal Length of Concave Mirror and Convex Lens Refractive Index of a Liquid Using a Convex Lens and Plane Mirror Hypermetropia or Hyperopia Fermat's Principle Eye Defects: Myopia Fisheye Lens Hyperopia Lens Formula Macro Lenses Mirage Myopia Photometry Reflection of Light in a Mirror Reflection of Light Refraction of Light by Spherical Lenses Refraction and Dispersion of Light through a Prism Shadow Formation Specular and Diffuse Reflection Spherical Mirror Formula Human Eye Relation Between Focal Length and Radius of Curvature Structure and Functioning of the Human Eye Determine the Refractive Index of a Glass Slab Using a Travelling Microscope Find the Focal Length of a Convex Mirror Using a Convex Lens Find the Focal Length of a Convex Lens by Plotting Graphs Find Focal Length of Concave Lens Using Convex Lens Find Image Distance for Varying Object Distances of a Convex Lens with Ray Diagrams Tracing Path of a Ray of Light Passing Through a Glass Slab What is Presbyopia (Eye Defects) Why do we have two Eyes? Astigmatism (Eye Defects) Biconvex Lens Concave and Convex Lenses Concave and Convex Mirrors Dispersion in Prism Law of Refraction (Snell's Law) Lenses in Ray Optics and Optical Instruments Mirror Formula for Spherical Mirrors Refraction of Light in Glass Prism Reflection on a Plane Mirror Lens Maker's Formula Thin Lens Formula for Concave and Convex Lenses To Determine Minimum Deviation for Given Prism by Plotting Graph Between Angle of Incidence and Angle of Deviation To Find Values of Concave Mirror and Find Focal Length Apparent Depth How to find Angle of Refraction Image Formation in Convex Mirror Lens Longitudinal Magnification Propagation of Light and Laws of Reflection Incoherent Sources Coherence and Coherent Sources Monochromatic Light Wavelength of Light Colored Shadows White Light What is Scattering of Light Interference and Diffraction Polarization by Scattering Newton's Prism Experiment Dispersion of White Light by Glass Prism Coherent Sources What is Monochromatic Light
Electric Charges and Fields Electrostatic Potential and Capacitance Current Electricity Moving Charges and Magnetism Magnetism and Matter Electromagnetic Induction Alternating Current Electromagnetic Waves Wave Optics Dual Nature of Radiation and Matter Atoms Nuclei Semiconductor Electronics Earth Science Physical World Units and Measurements Motion in a Straight Line Motion in a Plane Laws of Motion Work Energy and Power System of Particles and Rotational Motion Gravitation Mechanical Properties of Solids Mechanical Properties of Fluids Thermal Properties of Matter Kinetic Theory of Gases Thermodynamics Oscillations Waves

Understanding the Fisheye Lens

A fisheye lens, also known as an ultra-wide or super-wide lens, is a type of ultra-wide-angle lens that is capable of capturing wide angles up to 180 degrees. These lenses are particularly popular in the fields of extreme sports, landscape, and artistic photography.

The term 'fisheye' was coined in 1906 by Robert W. Wood, an American physicist and the inventor of this lens. The fisheye lens was first used in 1920 for the study of cloud formation. The angle of view of fisheye lenses typically ranges between 100 and 180 degrees, and their focal lengths vary depending on the format they are used for.

Table of Contents


Types of Fisheye Lens

Fisheye lenses are primarily categorized into two types: full-frame and circular frame. Both types produce different effects and yield different types of images. Let's delve into each type.

Full Frame Fisheye Lenses

Full-frame fisheye lenses can capture a 180° field of view along their diagonal. The vertical and horizontal sides of the image do not exceed 180°. Despite their inability to capture wide angles, they are widely used because the images produced are rectangular and do not have black edges.

Circular Fisheye Lens

The circular fisheye lens can capture a complete 180-degree view in all directions, resulting in a circular image. However, this lens has a drawback: it forms black edges. These lenses are mainly used in artistic photography and skateboard photography.

Learn more about the concave lens and its uses here.

Fisheye Lens Projection

The image below illustrates that the object's projection is 90° either to the left or right of the pinhole. The object's position is linearly proportional to the angle. While the captures of the fisheye lens are impressive, their projection is considered unattractive.

Both types of fisheye lenses have the same projection, with the only difference being in the field of view. The following table provides mathematical formulas for different fisheye projections:

Projection Formula
Equidistant fisheye R = f . θ
Equal area fisheye

Where,

  • R is the radial position of a point on the image obtained on the screen
  • f is the focal length of the lens
  • θ is the angle between the point in the real world and the optical axis, measured in radians.

Test Series
130.8k Students
NCERT XI-XII Physics Foundation Pack Mock Test
323 TOTAL TESTS | 5 Free Tests
  • 3 Live Test
  • 163 Class XI Chapter Tests
  • 157 Class XII Chapter Tests

Get Started

Characteristics of Fisheye Lens

Here are the main characteristics of a fisheye lens:

  • Focal length: A typical circular fisheye lens has a focal length of 8mm to 10mm, while a full-frame lens has a focal length of 15mm to 16mm.
  • Angle of view: At its widest point, a fisheye lens has an angle of view of 180°.
  • Image distortion: Images captured with a fisheye lens have a distortion known as barrel distortion, where the center of the frame appears to bulge outwards, resulting in a curvilinear image.
  • Depth of field: Due to the extreme angle, the fisheye lens has a very large depth of field.

Learn more about the convex lens and its uses here.

Applications of Fisheye Lens
  • Fisheye lenses are used in extreme sports, landscape, and artistic photography.
  • Many planetariums use fisheye lenses for night sky projection and to project digital content onto the room's interior.
  • Visual combat simulators and flight simulators use fisheye lenses for air traffic control and military personnel training.
  • Resource managers and scientists use fisheye lenses for hemispherical photography.
  • Astronomers use fisheye lenses to capture data on light pollution and cloud cover.
  • Videographers and photographers use fisheye lenses to take action shots, such as focusing on the skateboard and skater during skateboarding.
  • Fisheye lenses are widely used in computer graphics, typically for creating environment maps from the physical world.

More Articles for Physics

Frequently Asked Questions

A fisheye lens is an ultra-wide-angle lens that is designed for shooting wide angles generally 180 degrees. They are famous for extreme sport, landscape, and artistic photography.

There are two main types of fisheye lenses: i) Full Frame Fisheye Lens ii) Circular Fisheye Lens

Focal length: A typical circular fisheye lens has an 8mm to 10mm focal length while the focal length of a full-frame lens is 15mm to 16mm. The angle of view: The angle of view of a fisheye lens is 180° at the widest point. Image distortion: Images obtained from the fisheye lens have a distortion called barrel distortion where the centre of the frame appears to bulge outwards and the image obtained is known as a curvilinear image. Depth of field: The depth of field of the fisheye lens is very large because of the extreme angle.

These lenses are used in extreme sport, landscape, and artistic photography. Many planetariums use this lens for night sky projection and to project digital content on the interior of the room. Visual combat simulators and flight simulators use fisheye projection lens for air traffic controllers and to train military personnel. Resource managers and scientists use these lenses for hemispherical photography. These lenses are also used by astronomers to capture light pollution data and cloud cover. Videographers and photographers use fisheye lenses to take action shots. For example, while skateboarding these lenses are used to focus on the board and the skater. These are widely used in computer graphics generally to create environment maps from the physical world.

Report An Error