Parabola, Ellipse and Hyperbola MCQ Quiz - Objective Question with Answer for Parabola, Ellipse and Hyperbola - Download Free PDF

Last updated on May 20, 2025

Latest Parabola, Ellipse and Hyperbola MCQ Objective Questions

Parabola, Ellipse and Hyperbola Question 1:

- www.khautorepair.com

Consider the rotated parabola given by the equation \(3x^2+4xy+y^2−10x+2y+1=0\)3x2+4xy+y210x+2y+1=0" id="MathJax-Element-5-Frame" role="presentation" style="position: relative;" tabindex="0">3x2+4xy+y210x+2y+1=0" id="MathJax-Element-10-Frame" role="presentation" style="position: relative;" tabindex="0">3x2+4xy+y210x+2y+1=0" id="MathJax-Element-28-Frame" role="presentation" style="position: relative;" tabindex="0">3x2+4xy+y210x+2y+1=0
and match the items of List–I with those of List–II:

List – I List – II
(A)  x + y − 3 = 0 (P) Vertex
(B)  (7/2, −1/2) (Q) Focus
(C)  x − 2y + 1 = 0 (R) Equation of directrix
(D)  y = −x + 4 (S) Equation of axis
  (T) Equation of Latus rectum

Which is the correct option?

  1. A–R, B–Q, C–T, D–S
  2. A–Q, B–R, C–T, D–P
  3. A–R, B–T, C–Q, D–P
  4. A–R, B–Q, C–S, D–T

Answer (Detailed Solution Below)

Option 1 : A–R, B–Q, C–T, D–S

Parabola, Ellipse and Hyperbola Question 1 Detailed Solution

Concept:

Conic Sections and Rotated Parabolas:

  • A conic section is the curve obtained by intersecting a cone with a plane. It includes parabolas, ellipses, and hyperbolas.
  • A parabola is a conic section where the eccentricity e = 1.
  • When the general second-degree equation Ax2 + B x y + Cy2 + Dx + E y + F = 0 has a non-zero B, it may represent a rotated conic.
  • To eliminate the x y term, we perform a rotation of axes using:
    • x = x′cosθ − y′sinθ
    • y = x′sinθ + y′cosθ
  • The angle of rotation θ is found using: tan(2θ) = B / (A − C)
  • After rotation, the equation becomes a conic without the mixed term, allowing easy identification of axis, vertex, focus, etc.
  • Vertex of the parabola is the point from which distances to the focus and directrix are equal.
  • Latus rectum is the chord through the focus perpendicular to the axis of the parabola.

 

Calculation:

Given,

General equation: 3x2 + 4xy + y2 − 10x + 2y + 1 = 0

Let A = 3, B = 4, C = 1, D = -10, E = 2, F = 1

To eliminate xy term:

tan(2θ) = B / (A − C) = 4 / (3 − 1) = 2

⇒ 2θ = tan−1(2)

⇒ θ = 1/2 × tan−1(2)

Use θ to transform coordinates (x, y) → (x′, y′)

⇒ New equation becomes a standard parabola in rotated axes

⇒ Compare with standard form (y′ − k)2 = 4a(x′ − h)

⇒ Vertex (h, k) = (1, 1)

⇒ Focus (x, y) = (7/2, −1/2) after back transformation

⇒ Directrix equation transforms to: x + y − 3 = 0

⇒ Axis of parabola: y = −x + 4

⇒ Equation of Latus rectum in transformed axes becomes x − 2y + 1 = 0

∴ The correct matches are:

A–R, B–Q, C–T, D–S

Parabola, Ellipse and Hyperbola Question 2:

The equation of tangent to the parabola y2 + 12x = 0 from the point (3, 8) is

  1. x + y - 27 = 0
  2. x + 3y - 27 = 0
  3. x + 7y - 24 = 0
  4. More than one of the above

Answer (Detailed Solution Below)

Option 2 : x + 3y - 27 = 0

Parabola, Ellipse and Hyperbola Question 2 Detailed Solution

Concept:

Equation of parabola

Point of contact in terms of slope (m)

Equation of tangent in terms of slope

Condition of tangency

\({y^2} = 4ax\)

\(\left( {\frac{a}{{{m^2}}},\;\frac{{2a}}{m}} \right)\)

\(y = mx + \frac{a}{m}\)

\(c = \frac{a}{m}\)


Given:

The equation of a parabola is y2 + 12x = 0 

Tangent is drawn at point (3, 8)

Calculation:

y2 + 12x = 0 

⇒ y2 = - 12x

On comparing with the parabola equation, we get

⇒ 4a = - 12

⇒ a = - 3

On substituting on the equation of tangent in terms of slope, we get as

\(y = mx + \frac{-3}{m}\)     --- equation (1)

Since the tangent passes through (3, 8) so, (3, 8) satisfy the equation (1)

⇒ \(8 = 3m + \frac{-3}{m}\)

⇒ 3m2 - 8m - 3 = 0

⇒ m = 3, - 1/3

On substituting in the above equation (1), we get two tangents as,

⇒ x + 3y - 27 = 0 and 3x - y -1 = 0

So, only one option available so x + 3y - 27 = 0 is the required tangent.

Parabola, Ellipse and Hyperbola Question 3:

If the eccentricity of the standard hyperbola passing through the point (4, 6) is 2, then the equation of the tangent to the hyperbola at (4, 6) is

  1. x - y - 2 = 0
  2. 3x - 2y = 0
  3. 2x - 3y + 10 = 0
  4. 2x - y - 2 = 0

Answer (Detailed Solution Below)

Option 4 : 2x - y - 2 = 0

Parabola, Ellipse and Hyperbola Question 3 Detailed Solution

Concept:

The eccentricity of the hyperbola \({x^2 \over a^2} -{y^2 \over b^2}=1 \) is \(\sqrt{1+{b^2 \over a^2 }} \)

The equation of the tangent to the hyperbola \({x^2 \over a^2} -{y^2 \over b^2}=1 \) at (h,k) is

\({hx \over a^2} -{ky \over b^2}=1 \)

Calculation:

Let the equation of hyperbola be \({x^2 \over a^2} -{y^2 \over b^2}=1 \)

⇒ Eccentricity = 2 = \(\sqrt{1+{b^2 \over a^2 }}\)

⇒ 3a2 = b2

And hyperbola passes through (4,6)

⇒ \({4^2 \over a^2} -{6^2 \over b^2}=1 \)

⇒ \({16 \over a^2} -{36 \over 3a^2}=1 \)

⇒ a2 = 4 and b2 = 12

⇒ The equation of the tangent to the hyperbola \({x^2 \over 4} -{y^2 \over 12}=1 \) at (4,6) is

\({4x \over 4} -{6y \over 12}=1 \)

⇒ 2x - y - 2 = 0

∴ The correct answer is option (4).

Parabola, Ellipse and Hyperbola Question 4:

What is the eccentricity of the conic 4x2 + 9y2 = 144 ?

  1. \(\dfrac{\sqrt{5}}{3}\)
  2. \(\dfrac{\sqrt{5}}{4}\)
  3. \(\dfrac{3}{\sqrt{5}}\)
  4. 2/3
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : \(\dfrac{\sqrt{5}}{3}\)

Parabola, Ellipse and Hyperbola Question 4 Detailed Solution

Concept:

Equation of ellipse: \(\rm\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)

Eccentricity\(\rm\sqrt{1-\frac{b^2}{a^2}}\)

 

Calculation:

Here, 4x2 + 9y2 = 144

\(\Rightarrow \rm \frac{4x^2}{144}+\frac{9y^2}{144}=1\\ \Rightarrow \rm \frac{x^2}{\frac{144}{4}}+\frac{y^2}{\frac{144}{9}}=1\\ \)

So, a2 = 144/4 and b2 = 144/9

∴Eccentricity

 \(\rm\sqrt{1-\frac{b^2}{a^2}} \\=\sqrt{1-\frac{144}{9}\times \frac{4}{144}}\\ =\sqrt{1-\frac{4}{9}}\\ =\sqrt{\frac{5}{9}}\\ =\frac{\sqrt5}{3}\)

Hence, option (1) is correct. 

Parabola, Ellipse and Hyperbola Question 5:

The position of the point (1, 2) relative to the ellipse 2x2 + 7y2 = 20 is

  1. Outside the ellipse
  2. Inside the ellipse but not at the focus
  3. On the ellipse
  4. At the focus
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : Outside the ellipse

Parabola, Ellipse and Hyperbola Question 5 Detailed Solution

Concept:

1. Position of a point with respect to a curve:

  • For any curve F(x, y) = k in the xy-plane with k is a real number, then the point (a, b) lies on the curve if F(a, b) = k.
  • For any curve F(x, y) = k in the xy-plane with k is a real number, then the point (a, b) lies outside the curve if F(a, b) > k.
  • For any curve F(x, y) = k in the xy-plane with k is a real number, then the point (a, b) lies inside the curve if F(a, b) < k.

2. Standard equation of an ellipse and its foci:

  • The standard equation of an ellipse is of the form \(\frac{{{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} + \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}} = 1\). If a2 > b2 then the ellipse is horizontal and vertical otherwise.
  • The foci of the ellipse is given by (±c, 0) if the ellipse is horizontal and it is given by (0, ±c) if the ellipse is vertical.

 

Solution:

Observe that the given equation is of the form F(x, y) = k, where F(x, y) = 2x2 + 7y2 and k = 20.

Therefore, to find the position of the given point (1, 2) with respect to ellipse substitute x = 1 and y = 2 in the equation of the ellipse..

Therefore,

\(2{\left( 1 \right)^2} + {\rm{\;}}7{\left( 2 \right)^2} = 30\)

But 30 > 20 therefore we have F(1, 2) > k and therefore the point (1, 2) lies outside the ellipse.

Top Parabola, Ellipse and Hyperbola MCQ Objective Questions

The length of latus rectum of the hyperbola \(\rm \frac{x^2}{100} - \frac{y^2}{75} = 1\) is

  1. 10
  2. 12
  3. 14
  4. 15

Answer (Detailed Solution Below)

Option 4 : 15

Parabola, Ellipse and Hyperbola Question 6 Detailed Solution

Download Solution PDF

Concept:

Hyperbola: The locus of a point which moves such that its distance from a fixed point is greater than its distance from a fixed straight line. (Eccentricity = e > 1)

Equation

\(\frac{{\;{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

\(- \frac{{\;{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

Equation of Transverse axis

y = 0

x = 0

Equation of Conjugate axis

x = 0

y = 0

Length of Transverse axis

2a

2b

Length of Conjugate axis

2b

2a

Vertices

(± a, 0)

(0, ± b)

Focus

(± ae, 0)

(0, ± be)

Directrix

x = ± a/e

y = ± b/e

Centre

(0, 0)

(0, 0)

Eccentricity

\(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}}\)

\(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{a}}^2}}}{{{{\rm{b}}^2}}}}\)

Length of Latus rectum

\(\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}\)

\(\frac{{2{{\rm{a}}^2}}}{{\rm{b}}}\)

Focal distance of the point (x, y)

ex ± a

ey ± a

 

  • Length of Latus rectum = \(\rm \frac{2b^2}{a}\)

 

Calculation:

Given: \(\rm \frac{x^2}{100} - \frac{y^2}{75} = 1\)

Compare with the standard equation of a hyperbola: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

So, a2 = 100 and b2 = 75

∴ a = 10

Length of latus rectum =  \(\rm \frac{2b^2}{a}\)\(\rm \frac{2 \times 75}{10} = 15\)

The eccentricity of the hyperbola \(\rm \frac{x^2}{100} - \frac{y^2}{75} = 1\) is

  1. \(\sqrt { \frac{3}{4}}\)
  2. \(\sqrt { \frac{5}{4}}\)
  3. \(\sqrt { \frac{7}{4}}\)
  4. \(\sqrt { \frac{7}{3}}\)

Answer (Detailed Solution Below)

Option 3 : \(\sqrt { \frac{7}{4}}\)

Parabola, Ellipse and Hyperbola Question 7 Detailed Solution

Download Solution PDF

Concept:

Standard equation of an hyperbola : \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) 

  • Coordinates of foci = (± ae, 0)
  • Eccentricity (e) = \(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) ⇔ a2e2 = a2 + b2
  • Length of Latus rectum = \(\rm \frac{2b^2}{a}\)

 

Calculation:

Given: \(\rm \frac{x^2}{100} - \frac{y^2}{75} = 1\)

Compare with the standard equation of a hyperbola: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

So, a2 = 100 and b2 = 75

Now, Eccentricity (e) = \(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) 

\(\sqrt {1 + \frac{75}{100}}\)

\(\sqrt {1 + \frac{3}{4}}\)

\(\sqrt { \frac{7}{4}}\)

Find the equation of the hyperbola, the length of whose latus rectum is 4 and the eccentricity is 3 ?

  1. 2x2 - y2 = 1
  2. 16x2 - 2y2 = 1
  3. 6x2 - 2y2 = 1
  4. None of these

Answer (Detailed Solution Below)

Option 2 : 16x2 - 2y2 = 1

Parabola, Ellipse and Hyperbola Question 8 Detailed Solution

Download Solution PDF

CONCEPT:

The properties of a rectangular hyperbola \(\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\) are:

  • Its centre is given by: (0, 0)
  • Its foci are given by: (- ae, 0) and (ae, 0)
  • Its vertices are given by: (- a, 0)  and (a, 0)
  • Its eccentricity is given by: \(e = \frac{{\sqrt {{a^2} + {b^2}} }}{a}\)
  • Length of transverse axis = 2a and its equation is y = 0.
  • Length of conjugate axis = 2b and its equation is x = 0.
  • Length of its latus rectum is given by: \(\frac{2b^2}{a}\)

 

CALCULATION:

Here, we have to find the equation of hyperbola whose length of latus rectum is 4 and the eccentricity is 3.

As we know that, length of latus rectum of a hyperbola is given by \(\frac{2b^2}{a}\)

⇒ \(\frac{2b^2}{a} = 4\)

⇒ b2 = 2a

As we know that, the eccentricity of a hyperbola is given by \(e = \frac{{\sqrt {{a^2} + {b^2}} }}{a}\)

⇒ a2e2 = a2 + b2

⇒ 9a2 = a2 + 2a

⇒ a = 1/4

∵ b2 = 2a

⇒ b2 = 1/2

So, the equation of the required hyperbola is 16x2 - 2y2 = 1

Hence, option B is the correct answer.

The distance between the foci of a hyperbola is 16 and its eccentricity is √2. Its equation is

  1. x2 - y2 = 32
  2. \(\rm \dfrac{x^2}{4}-\dfrac{y^2}{9}=1\)
  3. 2x2 - 3y2 = 7
  4. y2 + x2 = 32

Answer (Detailed Solution Below)

Option 1 : x2 - y2 = 32

Parabola, Ellipse and Hyperbola Question 9 Detailed Solution

Download Solution PDF

Concept

The equation of the hyperbola is \(\rm \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1\) 

The distance between the foci of a hyperbola = 2ae 

Again, \(\rm b^2 = a^2(e^2-1)\)

 

Calculations:

The equation of the hyperbola is \(\rm \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1\) ....(1)

The distance between the foci of a hyperbola is 16 and its eccentricity e = √2.

We know that The distance between the foci of a hyperbola = 2ae 

⇒ 2ae = 16 

⇒ a  =  \(\dfrac {16}{2\sqrt 2}\) = \({4\sqrt 2}\)

Again, \(\rm b^2 = a^2(e^2-1)\)

⇒ \(\rm b^2 = 32(2-1)\)

⇒ \(\rm b^2 = 32\)

Equation (1) becomes

⇒ \(\rm \dfrac{x^2}{32} - \dfrac{y^2}{32} = 1 \)

⇒ x2 - y2 = 32

The equation of the ellipse whose vertices are at (± 5, 0) and foci at (± 4, 0) is

  1. \(\rm \frac {x^2}{25} + \frac {y^2}{9} = 1\)
  2. \(\rm \frac {x^2}{9} + \frac {y^2}{25} = 1\)
  3. \(\rm \frac {x^2}{16} + \frac {y^2}{25} = 1\)
  4. \(\rm \frac {x^2}{25} + \frac {y^2}{16} = 1\)

Answer (Detailed Solution Below)

Option 1 : \(\rm \frac {x^2}{25} + \frac {y^2}{9} = 1\)

Parabola, Ellipse and Hyperbola Question 10 Detailed Solution

Download Solution PDF

Concept:

Equation of ellipse: \(\rm\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)

Eccentricity (e) = \(\rm\sqrt{1-\frac{b^2 }{a^2}}\)

Where, vertices = (± a, 0) and focus = (± ae, 0)

Calculation:

Here, vertices of ellipse (± 5, 0) and foci (±4, 0)

So, a = ±5 ⇒ \(a^2=25\) and

ae = 4 ⇒ e = 4/5

Now, 4/5 = \(\rm\sqrt{1-\frac{b^2 }{5^2}}\)

\(⇒ \rm\frac{16}{25}=\rm\frac{25-b^2}{25}\\⇒ 16=25-b^2 \\⇒ b^2=9 \)

∴ Equation of ellipse = \(\rm \frac {x^2}{25} + \frac {y^2}{9} = 1\)

Hence, option (1) is correct. 

The vertex of the parabola (y - 3)2 = 20(x - 1) is:

  1. (-3, -1)
  2. (5, 0)
  3. (1, 3)
  4. (0, 5)

Answer (Detailed Solution Below)

Option 3 : (1, 3)

Parabola, Ellipse and Hyperbola Question 11 Detailed Solution

Download Solution PDF

Concept:

Parabola:
Standard Form of the equation: (y - k)2 = 4a(x - h)
Equation of the Axis: y = k
Vertex: (h, k)
Focus: (h + a, k)
Directrix: x = h - a

 

Calculation:

Comparing the given equation (y - 3)2 = 20(x - 1) with the general equation of the parabola (y - k)2 = 4a(x - h), we can say that:

k = 3, a = 5, h = 1.

Vertex is (h, k) = (1, 3).

In the parabola y2 = x, what is the length of the chord passing through the vertex and inclined to the x-axis at an angle θ?

  1. sin θ ⋅ sec2 θ
  2. cos θ . cosec2 θ
  3. cot θ ⋅ sec2 θ
  4. 2 tan θ ⋅ cosec2 θ

Answer (Detailed Solution Below)

Option 2 : cos θ . cosec2 θ

Parabola, Ellipse and Hyperbola Question 12 Detailed Solution

Download Solution PDF

Concept:

The coordinates of the point where the chord cut the parabola satisfIes  the equation of a parabola.

Calculation:

 F1 Shraddha Amar 14.01.2022 D6 

Given:

The equation of a parabola is y= x.

The angle made by Chord OA with x-axis is θ

Let the length of the chord OA of the parabola is L 

So, Length of AM = L sinθ 

and Length of OM = L cosθ 

So, The coordinate of A = (L cos θ, L sin θ)

And this point will satisfy the equation of parabola y= x.

⇒ (Lsin θ)= L cos θ

⇒L2 sinθ = L cos θ

⇒ L = cos θ. cosec2 θ

∴ The required length of chord is cos θ. cosec2 θ.

The eccentricity of the hyperbola 16x2 – 9y2 = 1 is

  1. \(\frac{3}{5}\)
  2. \(\frac{5}{3}\)
  3. \(\frac{4}{5}\)
  4. \(\frac{5}{4}\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{5}{3}\)

Parabola, Ellipse and Hyperbola Question 13 Detailed Solution

Download Solution PDF

Concept:

Hyperbola: The locus of a point which moves such that its distance from a fixed point is greater than its distance from a fixed straight line. (Eccentricity = e > 1)

Equation

\(\frac{{\;{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} - \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

\(- \frac{{\;{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

Equation of Transverse axis

y = 0

x = 0

Equation of Conjugate axis

x = 0

y = 0

Length of Transverse axis

2a

2b

Length of Conjugate axis

2b

2a

Vertices

(± a, 0)

(0, ± b)

Focus

(± ae, 0)

(0, ± be)

Directrix

x = ± a/e

y = ± b/e

Centre

(0, 0)

(0, 0)

Eccentricity

\(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}}\)

\(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{a}}^2}}}{{{{\rm{b}}^2}}}}\)

Length of Latus rectum

\(\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}\)

\(\frac{{2{{\rm{a}}^2}}}{{\rm{b}}}\)

Focal distance of the point (x, y)

ex ± a

ey ± a

 

Calculation:

Given:

16x2 – 9y2 = 1

\( \Rightarrow \frac{{{\rm{\;}}{{\rm{x}}^2}}}{{\frac{1}{{16}}}} - \frac{{{{\rm{y}}^2}}}{{\frac{1}{9}}} = 1\)

Compare with \(\frac{{{\rm{\;}}{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} - \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}} = 1\)

∴ a2 = 1/16 and b2 = 1/9

Eccentricity = \(\sqrt {1 + {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} = \;\sqrt {1 + \;\frac{{\left( {\frac{1}{9}} \right)}}{{\left( {\frac{1}{{16}}} \right)}}} = \;\sqrt {1 + \;\frac{{16}}{9}} = \;\sqrt {\frac{{25}}{9}} = \;\frac{5}{3}\) 

What is the focus of the parabola x2 = 16y ?

  1. (4, 0)
  2. (0, 4)
  3. (0, -4)
  4. (4, 4)

Answer (Detailed Solution Below)

Option 2 : (0, 4)

Parabola, Ellipse and Hyperbola Question 14 Detailed Solution

Download Solution PDF

Concept:

Parabola: The locus of a point which moves such that its distance from a fixed point is equal to its distance from a fixed straight line. (Eccentricity = e =1)

Equation

x2 = 4ay; 

Vertex

(0, 0)

Focus

(0, a)

Equation of the directrix

y = -a

Equation of the axis

x = 0

Length of Latus rectum

4a

Focal distance 

y + a

 

Calculation:

Given: x2 = 16y

⇒ x2 = 4 × 4 × y

Compare with standard equation of parabola x2 = 4ay 

So, a = 4

Therefore, Focus  = (0, a) = (0, 4)

Length of Latus rectum of ellipse \(\rm\frac{x^{2}}{25}+\frac{y^{2}}{49}= 1\) is

  1. \(\rm\frac{98}{5}\)
  2. \(\rm\frac{50}{7}\)
  3. \(\rm\frac{25}{7}\)
  4. \(\rm\frac{49}{5}\)

Answer (Detailed Solution Below)

Option 2 : \(\rm\frac{50}{7}\)

Parabola, Ellipse and Hyperbola Question 15 Detailed Solution

Download Solution PDF

Concept: 

Standard equation of ellipse , \(\rm\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}= 1\) 

                  quesImage6642 

Length of latus rectum , L.R = \(\rm\frac{2a^{2}}{b}\) , if  b > a

Calculation: 

\(\rm\frac{x^{2}}{25}+\frac{y^{2}}{49}= 1\) ,

On comparing with standard equation , a = 5 and b = 7 

We know that , Length of latus rectum = \(\rm\frac{2a^{2}}{b}\)  

⇒ L.R = \(\rm\frac{2\times5^{2}}{7}\) =  \(\rm\frac{50}{7}\) . 

The correct option is 2. 

Get Free Access Now
Hot Links: all teen patti master teen patti yas teen patti bindaas teen patti winner