Limit and Continuity MCQ Quiz - Objective Question with Answer for Limit and Continuity - Download Free PDF
Last updated on Jun 25, 2025
Latest Limit and Continuity MCQ Objective Questions
Limit and Continuity Question 1:
Consider the function f : ℝ → ℝ defined by
\(\rm f(x)=\left\{\begin{matrix}x^2\sin \left(\frac{1}{x}\right),&if\ x\ne0\\\ 0,&if\ x=0\end{matrix}\right.\)
Which of the following statements are true?
Answer (Detailed Solution Below)
Limit and Continuity Question 1 Detailed Solution
Concept:
- Limit: \( \displaystyle\lim_{x\to0}f(x) \) exists if left-hand and right-hand limits coincide.
- Continuity: \( f \) is continuous at \( x=0 \) when \( \displaystyle\lim_{x\to0}f(x)=f(0) \).
- Differentiability: \( f \) is differentiable at \( x=0 \) if \( f'(0)=\displaystyle\lim_{h\to0}\frac{f(h)-f(0)}{h} \) exists.
- Derivative limit: Even if \( f'(0) \) exists, \( \displaystyle\lim_{x\to0}f'(x) \) may fail to exist due to oscillation.
Calculation:
Given,
\( f(x)=\begin{cases}x^{2}\sin\!\left(\dfrac{1}{x}\right),& x\ne0\\[4pt]0,& x=0\end{cases} \)
⇒ \( |x^{2}\sin(1/x)|\le x^{2} \)
⇒ \( \displaystyle\lim_{x\to0}f(x)=0 \)
⇒ limit exists
⇒ \( f(0)=0 \)
⇒ limit = value
⇒ continuous
⇒ \( f'(0)=\displaystyle\lim_{h\to0}\frac{h^{2}\sin(1/h)}{h} \)
⇒ \( =\lim_{h\to0}h\sin(1/h)=0 \)
⇒ differentiable at 0
⇒ For \( x\ne0 \), \( f'(x)=2x\sin(1/x)-\cos(1/x) \)
⇒ \( 2x\sin(1/x)\to0 \) as \( x\to0 \)
⇒ \( -\cos(1/x) \) oscillates
⇒ overall limit of \( f'(x) \) as \( x\to0 \) does not exist
∴ statements 1, 2, 3 and 4 are all true.
Limit and Continuity Question 2:
Comprehension:
Let the function f(x) = x 2 + 9
Consider the following statements:
I. f(x) is an increasing function.
II. f(x) has local maximum at x = 0
Which of the statements given above is/are correct?
Answer (Detailed Solution Below)
Limit and Continuity Question 2 Detailed Solution
Calculation:
Given,
The function is \( f(x) = x^2 + 9 \).
Statement I: f(x) is an increasing function.
The derivative of f(x) is:
\( f'(x) = \frac{d}{dx}(x^2 + 9) = 2x \)
When \(( x > 0 )\), \(( f'(x) > 0 )\), so (f(x) is increasing.
When (x < 0), f'(x) < 0 ), so f(x) is decreasing.
At (x = 0), ( f'(x) = 0 ), meaning the function is neither increasing nor decreasing at this point.
Hence, f(x) is not entirely increasing. It is increasing for (x > 0) and decreasing for ( x < 0).
Statement II: f(x) has local maximum at x = 0
Since the function\( f(x) = x^2 + 9 \) is a parabola opening upwards (because the coefficient of x2 is positive), it has a global minimum at x = 0, not a local maximum.
Conclusion:
- Statement I is incorrect because the function is not entirely increasing. It is increasing for x > 0 and decreasing for x < 0 .
- Statement II is incorrect because the function has a global minimum at x = 0, not a local maximum.
Hence, the correct answer is Option 4.
Limit and Continuity Question 3:
Comprehension:
Let the function f(x) = x 2 + 9
What is \(\lim_{x \to 0} \frac{\sqrt{f(x)} - 3}{\sqrt{f(x)+7} - 4}\) equal to?
Answer (Detailed Solution Below)
Limit and Continuity Question 3 Detailed Solution
Calculation:
Given,
The function is \( f(x) = \sqrt{x^2 + 9} - 3 \) and \( g(x) = \sqrt{x^2 + 16} - 4 \).
We are tasked with finding:
\( \lim_{x \to 0} \frac{f(x)}{g(x)} \)
Multiply both the numerator and denominator by their respective conjugates:
\( \frac{\sqrt{x^2 + 9} - 3}{\sqrt{x^2 + 16} - 4} \times \frac{\sqrt{x^2 + 9} + 3}{\sqrt{x^2 + 9} + 3} \times \frac{\sqrt{x^2 + 16} + 4}{\sqrt{x^2 + 16} + 4} \)
Simplify the numerator:
\( (\sqrt{x^2 + 9} - 3)(\sqrt{x^2 + 9} + 3) = x^2 \)
Simplify the denominator:
\( (\sqrt{x^2 + 16} - 4)(\sqrt{x^2 + 16} + 4) = x^2 \)
Now, the expression becomes:
\( \frac{x^2}{x^2} \times \frac{\sqrt{x^2 + 16} + 4}{\sqrt{x^2 + 9} + 3} \)
Simplify and evaluate the limit:
\( \frac{\sqrt{x^2 + 16} + 4}{\sqrt{x^2 + 9} + 3} \) becomes:
\( \frac{\sqrt{16} + 4}{\sqrt{9} + 3} = \frac{4 + 4}{3 + 3} = \frac{8}{6} = \frac{4}{3} \)
Hence, the correct answer is Option 3.
Limit and Continuity Question 4:
Comprehension:
Consider the following for the two (02) items that follow:
\(\text{Let } f(x)= \begin{cases} x^3, & x^2 < 1 \\ x^2, & x^2 \ge 1 \end{cases} \\\)
Consider the following statements:
I. The function is continuous at .
II. The function is differentiable at .
Which of the statements given above is/are correct?
Answer (Detailed Solution Below)
Limit and Continuity Question 4 Detailed Solution
Calculation:
Given,
The function is defined as:
\( f(x) = \begin{cases} x^3, & \text{if} \, |x| < 1 \\ x^2, & \text{if} \, |x| \geq 1 \end{cases} \)
We are tasked with finding:
\( \lim_{x \to -1} f'(x) \)
Check the left-hand limit for continuity at x = -1 :
\( \lim_{x \to -1^-} f(x) = (-1)^2 = 1 \)
Check the right-hand limit for continuity at x = -1 :
\( \lim_{x \to -1^+} f(x) = (-1)^3 = -1 \)
Since the left-hand limit (L.H.S) and right-hand limit (R.H.S) are not equal, the function is discontinuous at x = -1 .
Check the differentiability at x = 1 :
The left-hand derivative at x = 1 is \(\text{L.H.D} = 3 \) and the right-hand derivative at x = 1 is \(\text{R.H.D} = 2 \) which means the function is not differentiable at x = 1
∴ The function is neither continuous at x = -1 nor differentiable at x = 1 .
Hence, the correct answer is Option 4.
Limit and Continuity Question 5:
Comprehension:
Consider the following for the two (02) items that follow:
\(\text{Let } f(x)= \begin{cases} x^3, & x^2 < 1 \\ x^2, & x^2 \ge 1 \end{cases} \\\)
What is \(\lim_{x \to 0} f'(x)\) equal to?
Answer (Detailed Solution Below)
Limit and Continuity Question 5 Detailed Solution
Calculation:
Given,
The function is defined as:
\( f(x) = \begin{cases} x^3, & \text{if} \, |x| < 1 \\ x^2, & \text{if} \, |x| \geq 1 \end{cases} \)
We are tasked with finding:
\( \lim_{x \to 0} f'(x) \)
For |x| < 1 , the function is f(x) = x3, so the derivative is:
\( f'(x) = 3x^2 \)
Now, compute the limit of the derivative as x to 0:
\( \lim_{x \to 0} f'(x) = \lim_{x \to 0} 3x^2 = 0 \)
∴ The value of \(\lim_{x \to 0} f'(x) \)is 0.
The correct answer is Option (c)
Top Limit and Continuity MCQ Objective Questions
Find the value of \(\rm \displaystyle \lim_{x \rightarrow \infty} 2x \sin \left(\frac{4} {x}\right)\)
Answer (Detailed Solution Below)
Limit and Continuity Question 6 Detailed Solution
Download Solution PDFConcept:
\(\rm \displaystyle \lim_{x \rightarrow 0} \frac{\sin x}{x} = 1\)
Calculation:
\(\rm \displaystyle \lim_{x \rightarrow \infty} 2x \sin \left(\frac{4} {x}\right)\)
= \(\rm 2 \times \displaystyle \lim_{x → ∞} \frac{\sin \left(\frac{4} {x}\right)}{\left(\frac{1}{x} \right )}\)
= \(\rm 2 \times \displaystyle \lim_{x → ∞} \frac{\sin \left(\frac{4} {x}\right)}{\left(\frac{4}{x} \right )} \times 4\)
Let \(\rm \frac {4}{x} = t\)
If x → ∞ then t → 0
= \(\rm 8 \times\displaystyle \lim_{t \rightarrow 0} \frac{\sin t}{t} \)
= 8 × 1
= 8
What is the value of \(\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{{{\left( {1 - \cos2x} \right)}^2}\;}}{{{x^4}}}\)
Answer (Detailed Solution Below)
Limit and Continuity Question 7 Detailed Solution
Download Solution PDFConcept:
- 1 - cos 2θ = 2 sin2 θ
- \(\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{\sin x}}{x} = 1\)
Calculation:
\(\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{{{\left( {1 - \cos2x} \right)}^2}\;}}{{{x^4}}}\)
= \(\;\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{{{\left( {2{{\sin }^2}x} \right)}^2}}}{{{x^4}}}\) (1 - cos 2θ = 2 sin2 θ)
= \(\;\mathop {{\rm{lim}}}\limits_{x \to 0} \;\;\frac{{4{{\sin }^4}x}}{{{x^4}}}\)
= \(\mathop {\lim }\limits_{x \to 0} 4\; × \;{\left( {\frac{{\sin x}}{x}} \right)^4}\)
= 4 × 1 = 4
Evaluate \(\rm \mathop {\lim }\limits_{x\rightarrow 0} \frac{\log (1+2x)}{\tan 2x}\)
Answer (Detailed Solution Below)
Limit and Continuity Question 8 Detailed Solution
Download Solution PDFConcept:
\(\rm \mathop {\lim }\limits_{x\; \to \;a} \left[ {\frac{{f\left( x \right)}}{{g\left( x \right)}}} \right] = \frac{{\mathop {\lim }\limits_{x\; \to \;a} f\left( x \right)}}{{\mathop {\lim }\limits_{x\; \to \;a} g\left( x \right)}},\;provided\;\mathop {\lim }\limits_{x\; \to a} g\left( x \right) \ne 0\)
\(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\tan x}}{x}} = 1\)
\(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\log (1+x)}}{x}} = 1\)
Calculation:
\(\rm \mathop {\lim }\limits_{x\rightarrow 0} \frac{\log (1+2x)}{\tan 2x}\)
\(\rm = \mathop {\lim }\limits_{x\rightarrow 0} \frac{\frac{\log (1+2x)}{2x} \times 2x}{\frac{\tan 2x}{2x} \times 2x}\\= \frac{\mathop {\lim }\limits_{x\rightarrow 0}\frac{\log (1+2x)}{2x} }{\mathop {\lim }\limits_{x\rightarrow 0}\frac{\tan 2x}{2x} }\)
As we know \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\tan x}}{x}} = 1\) and \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\log (1+x)}}{x}} = 1\)
Therefore, \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\tan 2x}}{2x}} = 1\) and \(\rm \mathop {\lim }\limits_{x\; \to 0} {\frac{{\log (1+2x)}}{2x}} = 1\)
Hence \(\rm \mathop {\lim }\limits_{x\rightarrow 0} \frac{\log (1+2x)}{\tan 2x} = \frac 1 1=1\)
Evaluate \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x}{\sqrt{1+2x^2}}\)
Answer (Detailed Solution Below)
Limit and Continuity Question 9 Detailed Solution
Download Solution PDFCalculation:
We have to find the value of \(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\)
\(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\) [Form \(\frac{∞}{∞}\)]
This limit is of the form \(\frac{∞}{∞}\), Here, We can cancel a factor going to ∞ out of the numerator and denominator.
\(\rm \mathop {\lim }\limits_{x\rightarrow ∞} \frac{x}{\sqrt{1+2x^2}}\)
= \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x}{x\sqrt{\frac{1}{x^2}+2}}\)
Factor x becomes ∞ at x tends to ∞, So we need to cancel this factor from numerator and denominator.
= \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{1}{\sqrt{\frac{1}{x^2}+2}}\)
= \(\frac{1}{\sqrt{\frac{1}{\infty^2}+2}}=\frac{1}{\sqrt{0+2}}=\frac{1}{\sqrt 2}\)
Evaluate \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\)
Answer (Detailed Solution Below)
Limit and Continuity Question 10 Detailed Solution
Download Solution PDFCalculation:
We have to find the value of \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\)
\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\) [Form \(\frac{∞}{∞}\)]
This limit is of the form \(\frac{∞}{∞}\), Here, We can cancel a factor going to ∞ out of the numerator and denominator.
\(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{{1+x^2}}\)
= \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{x^2}{x^2\left({\frac {1}{x^2}+1}\right)}\)
Factor x2 becomes ∞ at x tends to ∞, So we need to cancel this factor from numerator and denominator.
= \(\rm \mathop {\lim }\limits_{x\rightarrow \infty} \frac{1}{\left({\frac {1}{x^2}+1}\right)}\)
= \(\frac{1}{{\frac{1}{\infty^2}+1}}=\frac{1}{{0+1}}=1\)
The value of \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{|x|}{x}\) is
Answer (Detailed Solution Below)
Limit and Continuity Question 11 Detailed Solution
Download Solution PDFConcept:
For a limit to exist, Left-hand limit and right-hand limit must be equal.
Calculations:
For a limit to exist Left-hand limit and right-hand limit must be equal.
|x| can have two values
|x | = - x when x is negative
|x| = x when x is positive.
\(\rm \displaystyle\lim_{x\rightarrow 0^-} \dfrac{|x|}{x}\) = \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{-x}{x} = -1\)
\(\rm \displaystyle\lim_{x\rightarrow 0^+} \dfrac{|x|}{x}\) = \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{x}{x} = 1\)
Here, \(\rm \displaystyle\lim_{x\rightarrow 0^-} \dfrac{|x|}{x} \neq \rm \displaystyle\lim_{x\rightarrow 0^+}\dfrac{|x|}{x}\)
Hence, \(\rm \displaystyle\lim_{x\rightarrow 0} \dfrac{|x|}{x}\)does not exist.
If \(\rm f(x)=\left\{\begin{matrix}\rm \dfrac{\sin 3x}{e^{2x}-1}, &\rm x \ne 0\\\rm k-2, &\rm x=0 \end{matrix}\right.\) is continuous at x = 0, then k = ?
Answer (Detailed Solution Below)
Limit and Continuity Question 12 Detailed Solution
Download Solution PDFConcept:
Definition:
- A function f(x) is said to be continuous at a point x = a in its domain, if \(\rm \displaystyle \lim_{x\to a}f(x)\) exists or or if its graph is a single unbroken curve at that point.
- f(x) is continuous at x = a ⇔ \(\rm \displaystyle \lim_{x\to a^+}f(x)=\lim_{x\to a^-}f(x)=\lim_{x\to a}f(x)=f(a)\).
Formulae:
- \(\rm \displaystyle \lim_{x\to 0}\dfrac{\sin x}{x}=1\)
- \(\rm \displaystyle \lim_{x\to 0}\dfrac{e^x-1}{x}=1\)
Calculation:
Since f(x) is given to be continuous at x = 0, \(\rm \displaystyle \lim_{x\to 0}f(x)=f(0)\).
Also, \(\rm \displaystyle \lim_{x\to a^+}f(x)=\lim_{x\to a^-}f(x)\) because f(x) is same for x > 0 and x < 0.
\(\rm \therefore \displaystyle \lim_{x\to 0}f(x)=f(0)\)
\(\rm \Rightarrow \displaystyle \lim_{x\to 0}\dfrac{\sin 3x}{e^{2x}-1}=k-2\)
\(\rm \Rightarrow \displaystyle \lim_{x\to 0}\dfrac{\dfrac{\sin 3x}{3x}\times3x}{\dfrac{e^{2x}-1}{2x}\times2x}=k-2\)
\(\rm \Rightarrow \dfrac{3}{2}=k-2\)
\(\rm \Rightarrow k=\dfrac{7}{2}\).
Examine the continuity of a function f(x) = (x - 2) (x - 3)
Answer (Detailed Solution Below)
Limit and Continuity Question 13 Detailed Solution
Download Solution PDFConcept:
- We say f(x) is continuous at x = c if
LHL = RHL = value of f(c)
i.e., \(\mathop {\lim }\limits_{{\rm{x}} \to {{\rm{c}}^ - }} {\rm{f}}\left( {\rm{x}} \right) = \mathop {\lim }\limits_{{\rm{x}} \to {{\rm{c}}^ + }} {\rm{f}}\left( {\rm{x}} \right) = {\rm{f}}\left( {\rm{c}} \right)\)
Calculation:
\(\mathop {\lim }\limits_{{\rm{x}} \to {\rm{a}}} {\rm{f}}\left( {\rm{x}} \right)\; = \;\mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} \left( {{\rm{x}} - 2} \right)\left( {{\rm{x}} - 3} \right)\) (a ϵ Real numbers)
\(= \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} {\rm{\;}}{{\rm{x}}^2} - 3{\rm{x}} - 2{\rm{x}} + 6\)
\(= \mathop {{\rm{lim}}}\limits_{{\rm{x}} \to {\rm{a}}} {\rm{\;}}{{\rm{x}}^2} - 5{\rm{x}} + 6\)
\(= {{\rm{a}}^2} - 5{\rm{a}} + 6\)
∴ f(x) = f(a), So continuous at everywhere
Important tip:
Quadratic and polynomial functions are continuous at each point in their domain
The value of \(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}\) is equal to:
Answer (Detailed Solution Below)
Limit and Continuity Question 14 Detailed Solution
Download Solution PDFConcept:
- \(\rm \displaystyle \lim_{x\to0}\dfrac{\tan x}{x}=1\).
- \(\rm \dfrac{d}{dx}\tan x=\sec^2x\).
- \(\rm \dfrac{d}{dx}\sec x=\tan x\sec x\).
- \(\rm \dfrac{d}{dx}\left[f(x)\times g(x)\right]=f(x)\dfrac{d}{dx}g(x)+g(x)\dfrac{d}{dx}f(x)\).
Indeterminate Forms: Any expression whose value cannot be defined, like \(\dfrac00\), \(\pm\dfrac{\infty}{\infty}\), 00, ∞0 etc.
- For the indeterminate form \(\dfrac 0 0\), first try to rationalize by multiplying with the conjugate, or simplify by cancelling some terms in the numerator and denominator. Else, use the L'Hospital's rule.
- L'Hospital's Rule: For the differentiable functions f(x) and g(x), the \(\rm \displaystyle \lim_{x\to c} \dfrac{f(x)}{g(x)}\), if f(x) and g(x) are both 0 or ±∞ (i.e. an Indeterminate Form) is equal to the \(\rm \displaystyle \lim_{x\to c} \dfrac{f'(x)}{g'(x)}\) if it exists.
Calculation:
\(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=\dfrac00\) is an indeterminate form. Let us simplify and use the L'Hospital's Rule.
\(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=\lim_{x\to 0}\left[\dfrac{\tan x - x}{x^3}\times\dfrac{x}{\tan x}\right]\).
We know that \(\rm \displaystyle\lim_{x\to 0}\dfrac{x}{\tan x}=1\), but \(\rm \displaystyle \lim_{x\to 0}\dfrac{\tan x - x}{x^3}\) is still an indeterminate form, so we use L'Hospital's Rule:
\(\rm \displaystyle \rm \displaystyle \lim_{x\to 0}\dfrac{\tan x - x}{x^3}=\lim_{x\to 0}\dfrac{\sec^2 x - 1}{3x^2}\), which is still an indeterminate form, so we use L'Hospital's Rule again:
\(\rm \displaystyle \lim_{x\to 0}\dfrac{\sec^2 x - 1}{3x^2}= \lim_{x\to 0}\dfrac{2\sec x(\sec x\tan x)}{6x}=\lim_{x\to 0}\dfrac{\sec^2 x\tan x}{3x}\), which is still an indeterminate form, so we use L'Hospital's Rule again:
\(\rm \displaystyle \lim_{x\to 0}\dfrac{\sec^2 x\tan x}{3x}=\lim_{x\to 0}\dfrac{\sec^2 x\sec^2 x+\tan x[2\sec x(\sec x \tan x)]}{3}=\dfrac{1}{3}\).
∴ \(\rm \displaystyle\lim_{x\to 0}\dfrac{\tan x - x}{x^2 \tan x}=1\times\dfrac{1}{3}=\dfrac{1}{3}\).
If \(\rm f(x) = \left\{ \begin{matrix} \rm \frac{2x-\sin^{-1} x}{2x + \tan^{-1} x}; & \rm x \ne 0 \\ \rm K; & \rm x = 0 \end{matrix}\right.\) is a continuous function at x = 0, then the value of k is:
Answer (Detailed Solution Below)
Limit and Continuity Question 15 Detailed Solution
Download Solution PDFConcept:
Definition:
- A function f(x) is said to be continuous at a point x = a in its domain, if \(\rm \displaystyle \lim_{x\to a}f(x)\) exists or or if its graph is a single unbroken curve at that point.
- f(x) is continuous at x = a ⇔ \(\rm \displaystyle \lim_{x\to a^+}f(x)=\lim_{x\to a^-}f(x)=\lim_{x\to a}f(x)=f(a)\).
Calculation:
For x ≠ 0, the given function can be re-written as:
\(\rm f(x) = \left\{ \begin{matrix} \rm \frac{2x-\sin^{-1} x}{2x + \tan^{-1} x}; & \rm x \ne 0 \\ \rm K; & \rm x = 0 \end{matrix}\right.\)
Since the equation of the function is same for x < 0 and x > 0, we have:
\(\rm \displaystyle \lim_{x\to 0^+}f(x)=\lim_{x\to 0^-}f(x)=\lim_{x\to 0}\frac{2x-\sin^{-1} x}{2x + \tan^{-1} x}\)
= \(\rm \displaystyle \lim_{x\to 0}\frac{2- \frac {\sin^{-1} x} x}{2 +\frac {\tan^{-1} x} x} = \frac {2-1}{2+1} = \frac 1 3\)
For the function to be continuous at x = 0, we must have:
\(\rm \displaystyle \lim_{x\to 0}f(x)=f(0)\)
⇒ K = \(\dfrac{1}{3}\).