Determinants MCQ Quiz - Objective Question with Answer for Determinants - Download Free PDF
Last updated on Apr 22, 2025
Latest Determinants MCQ Objective Questions
Determinants Question 1:
If p + q + r = a + b + c = 0, then the determinant \(\left| {\begin{array}{*{20}{c}} {{\rm{pa}}}&{{\rm{qb}}}&{{\rm{rc}}}\\ {{\rm{qc}}}&{{\rm{ra}}}&{{\rm{pb}}}\\ {{\rm{rb}}}&{{\rm{pc}}}&{{\rm{qa}}} \end{array}} \right|\) equals
Answer (Detailed Solution Below)
Determinants Question 1 Detailed Solution
Concept:
Determinant: If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_{11}}}&{{{\rm{a}}_{12}}}&{{{\rm{a}}_{13}}}\\ {{{\rm{a}}_{21}}}&{{{\rm{a}}_{22}}}&{{{\rm{a}}_{23}}}\\ {{{\rm{a}}_{31}}}&{{{\rm{a}}_{32}}}&{{{\rm{a}}_{33}}} \end{array}} \right]\) then determinant of A is given by:
|A| = a11 × {(a22 × a33) - (a23 × a32)} - a12 × {(a21 × a33) - (a23 × a31)} + a13 × {(a21 × a32) - (a22 × a31)}
Formulas used:
- a3 + b3 + c3 = 3abc, if a + b + c = 0.
Calculation:
Given: p + q + r = a + b + c = 0
To find: determinant \(\left| {\begin{array}{*{20}{c}} {{\rm{pa}}}&{{\rm{qb}}}&{{\rm{rc}}}\\ {{\rm{qc}}}&{{\rm{ra}}}&{{\rm{pb}}}\\ {{\rm{rb}}}&{{\rm{pc}}}&{{\rm{qa}}} \end{array}} \right|\)
\(\left| {\begin{array}{*{20}{c}} {{\rm{pa}}}&{{\rm{qb}}}&{{\rm{rc}}}\\ {{\rm{qc}}}&{{\rm{ra}}}&{{\rm{pb}}}\\ {{\rm{rb}}}&{{\rm{pc}}}&{{\rm{qa}}} \end{array}} \right|\)
Expanding R1,
= pa (ra × qa - pb × pc) - qb (qc × qa - pb × rb) + rc (qc × pc - ra × rb)
= pa(a2qr - p2bc) - qb(q2ac - b2pr) + rc(c2pq - r2ab)
= a3pqr - p3abc - q3abc + b3pqr + c3pqr - r3abc
= pqr(a3 + b3 + c3) - abc(p3 + q3 + r3)
Now we know that, a3 + b3 + c3 = 3abc, if a + b + c = 0.
= pqr (3abc) - abc (3pqr)
= 0
Determinants Question 2:
If x2 + y2 + z2 = 1, then what is the value
\(\begin{vmatrix}1&z&-y\\\ -z&1&x\\\ y&-x&1\end{vmatrix}=?\)
Answer (Detailed Solution Below)
Determinants Question 2 Detailed Solution
Calculation:
Given:
x2 + y2 + z2 = 1
then, \(\begin{vmatrix}1&\rm z&\rm -y\\\ \rm -z&1& \rm x\\\ \rm y& \rm -x&1\end{vmatrix}\)
Expanding along R1, we get-
1(1 + x2) + z(xy + z) − y(xz − y)
1(1 + x2) - z(-z - xy) − y(xz − y)
= 1 + x2 + xyz + z2 − xyz + y2
= 1 + x2 + y2 + z2
= 1 + 1 (∵ x2 + y2 + z2 = 1 (given))
= 2
The correct answer is option "3"
Determinants Question 3:
If \(\begin{vmatrix}x - 4 & 2x & 2x\\ 2x & x - 4 & 2x\\ 2x & 2x & x - 4\end{vmatrix} = (A + Bx) (x - A)^{2}\), then the ordered pair \((A, B)\) is equal to
Answer (Detailed Solution Below)
Determinants Question 3 Detailed Solution
\(\begin{vmatrix}x - 4 & 2x & 2x\\ 2x & x - 4 & 2x\\ 2x & 2x & x - 4\end{vmatrix} = (A + Bx) (x - A)^{2}\)
Consider \(D=\begin{vmatrix}x - 4 & 2x & 2x\\ 2x & x - 4 & 2x\\ 2x & 2x & x - 4\end{vmatrix}\)
Applying \(R_{1}\rightarrow R_{1}+R_{2}+R_{3}\)
\(D=\begin{vmatrix}5x - 4 & 5x-4 & 5x-4\\ 2x & x - 4 & 2x\\ 2x & 2x & x - 4\end{vmatrix}\)
\(D=(5x-4)\begin{vmatrix}1 & 1 & 1\\ 2x & x - 4 & 2x\\ 2x & 2x & x - 4\end{vmatrix}\)
Applying \(R_{2}\rightarrow R_{2}-R_{3}\)
\(D=(5x-4)\begin{vmatrix}1 & 1 & 1\\ 0 & -(x + 4) & x+4\\ 2x & 2x & x - 4\end{vmatrix}\)
\(D=(5x-4)[1(-(x+4)(x-4)-2x(x+4))-1(-2x(x+4))+1(2x(x+4))]\)
\(D=(5x-4)[-x^{2}+16-2x^{2}-8x+2x^{2}+8x+2x^{2}+8x]\)
\(D=(5x-4)[x^{2}+8x+16]\)
\(D=(5x-4)(x+4)^{2}\)
\(D=(-4+5x)(x-(-4))^{2}\)
Hence, \(A=-4, B=5\)
Determinants Question 4:
If \(\begin{vmatrix}x - 4 & 2x & 2x\\ 2x & x - 4 & 2x\\ 2x & 2x & x - 4\end{vmatrix} = (A + Bx) (x - A)^{2}\), then the ordered pair \((A, B)\) is equal to
Answer (Detailed Solution Below)
Determinants Question 4 Detailed Solution
\(\begin{vmatrix}x - 4 & 2x & 2x\\ 2x & x - 4 & 2x\\ 2x & 2x & x - 4\end{vmatrix} = (A + Bx) (x - A)^{2}\)
Consider \(D=\begin{vmatrix}x - 4 & 2x & 2x\\ 2x & x - 4 & 2x\\ 2x & 2x & x - 4\end{vmatrix}\)
Applying \(R_{1}\rightarrow R_{1}+R_{2}+R_{3}\)
\(D=\begin{vmatrix}5x - 4 & 5x-4 & 5x-4\\ 2x & x - 4 & 2x\\ 2x & 2x & x - 4\end{vmatrix}\)
\(D=(5x-4)\begin{vmatrix}1 & 1 & 1\\ 2x & x - 4 & 2x\\ 2x & 2x & x - 4\end{vmatrix}\)
Applying \(R_{2}\rightarrow R_{2}-R_{3}\)
\(D=(5x-4)\begin{vmatrix}1 & 1 & 1\\ 0 & -(x + 4) & x+4\\ 2x & 2x & x - 4\end{vmatrix}\)
\(D=(5x-4)[1(-(x+4)(x-4)-2x(x+4))-1(-2x(x+4))+1(2x(x+4))]\)
\(D=(5x-4)[-x^{2}+16-2x^{2}-8x+2x^{2}+8x+2x^{2}+8x]\)
\(D=(5x-4)[x^{2}+8x+16]\)
\(D=(5x-4)(x+4)^{2}\)
\(D=(-4+5x)(x-(-4))^{2}\)
Hence, \(A=-4, B=5\)
Determinants Question 5:
If u, v and w (all positive) are the pth, qth and rth terms of a GP, then the determinant of the Matrix \(\left( {\begin{array}{*{20}{c}} {lnu}&p&1\\ {lnv}&q&1\\ {lnw}&r&1 \end{array}} \right)is\)
Answer (Detailed Solution Below)
Determinants Question 5 Detailed Solution
Concept
1. Let a be the first term of the GP and r is the common ratio.
So, nth term of a GP = a rn - 1
2. Product rule: The log of a product equals the sum of two logs.
\({\log _a}\left( {mn} \right) = \;{\log _a}m + \;{\log _a}n\)
3. Quotient rule: The log of a quotient equals the difference of two logs.
\({\log _a}\frac{m}{n} = \;{\log _a}m - \;{\log _a}n\)
4. Power rule: In the log of a power the exponent becomes a coefficient.
\({\log _a}{m^n} = n{\log _a}m\)
Calculation:
Let a is the first term of the GP and R is the common ratio, then we are given,
Given: u, v and w (all positive) are the pth, qth and rth terms of a GP
So, u = aRp - 1, v = aRq - 1 and w = aRr - 1
\(\left[ {\begin{array}{*{20}{c}} {\ln {\rm{u}}}&{\rm{p}}&1\\ {\ln {\rm{v}}}&{\rm{q}}&1\\ {\ln {\rm{w}}}&{\rm{r}}&1 \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} {\ln \;(a{R^{p\; - \;1}})}&{\rm{p}}&1\\ {\ln \;(a{R^{q\; - \;1}})}&{\rm{q}}&1\\ {\ln (a{R^{r\; - \;1}})}&{\rm{r}}&1 \end{array}} \right]\)
\(= \left[ {\begin{array}{*{20}{c}} {\ln a + \left( {p - 1} \right)\ln R}&{\rm{p}}&1\\ {\ln a + \left( {{\rm{q}} - 1} \right)\ln R}&{\rm{q}}&1\\ {\ln a + \left( {{\rm{r}} - 1} \right)\ln R}&{\rm{r}}&1 \end{array}} \right]\)
Now, Applying R1 → R1 - R3 and R2 → R2 - R3
\(= \left[ {\begin{array}{*{20}{c}} {\left( {{\rm{p}} - {\rm{r}}} \right){\rm{ln\;R}}}&{{\rm{p}} - {\rm{r}}}&0\\ {\left( {{\rm{q}} - {\rm{r\;}}} \right)\ln {\rm{R}}}&{{\rm{q}} - {\rm{r\;}}}&0\\ {\ln a{\rm{\;}} + {\rm{\;}}\left( {{\rm{r}} - 1} \right)\ln R}&{\rm{r}}&1 \end{array}} \right]\)
Now, Expanding along C3
= 1 × {(p - r) ln R × (q - r) - (p - r) × (q - r) ln R}
= (p - r) (q - r) (ln R - ln R)
= 0Top Determinants MCQ Objective Questions
If \({\rm{f}}\left( {\rm{x}} \right) = {\rm{\;}}\left| {\begin{array}{*{20}{c}} 1&2\\ {\rm{x}}&{\rm{a}} \end{array}} \right|\) then 2f(x) – f(2x) =
Answer (Detailed Solution Below)
Determinants Question 6 Detailed Solution
Download Solution PDFConcept:
If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_{11}}}&{{{\rm{a}}_{12}}}\\ {{{\rm{a}}_{21}}}&{{{\rm{a}}_{22}}} \end{array}} \right]\) then determinant of A is given by:
|A| = (a11 × a22) - (a12 × a21)
Calculation:
Given: \({\rm{f}}\left( {\rm{x}} \right) = {\rm{\;}}\left| {\begin{array}{*{20}{c}} 1&2\\ {\rm{x}}&{\rm{a}} \end{array}} \right|\)
To find: 2f(x) – f(2x) =?
\({\rm{f}}\left( {\rm{x}} \right) = {\rm{\;}}\left| {\begin{array}{*{20}{c}} 1&2\\ {\rm{x}}&{\rm{a}} \end{array}} \right| = \left( {1 \times {\rm{a}}} \right) - \left( {2 \times {\rm{x}}} \right)\)
\( \Rightarrow {\rm{f}}\left( {\rm{x}} \right) = {\rm{a}} - 2{\rm{x\;\;}}\)
So, \({\rm{f}}\left( {2{\rm{x}}} \right) = {\rm{a}} - 2\left( {2{\rm{x}}} \right) = {\rm{a}} - 4{\rm{x}}\) (put x = 2x)
\(\therefore 2{\rm{f}}\left( {\rm{x}} \right) - {\rm{\;f}}\left( {2{\rm{x}}} \right) = 2\left( {{\rm{a}} - 2{\rm{x}}} \right) - \left( {{\rm{a}} - 4{\rm{x}}} \right)\)
\(\Rightarrow 2{\rm{a}} - 4{\rm{x}} - {\rm{a}} + 4{\rm{x}} = {\rm{a}}\)
Hence, option (4) is correct.
Find the determinant of the matrix \(\begin{vmatrix} \rm x-a & \rm y-b & \rm z-c\\ \rm a & \rm b & \rm c \\ \rm x & \rm y & \rm z \end{vmatrix}\)
Answer (Detailed Solution Below)
Determinants Question 7 Detailed Solution
Download Solution PDFConcept:
Properties of Determinant of a Matrix:
- If each entry in any row or column of a determinant is 0, then the value of the determinant is zero.
- For any square matrix say A, |A| = |AT|.
- If we interchange any two rows (columns) of a matrix, the determinant is multiplied by -1.
- If any two rows (columns) of a matrix are same then the value of the determinant is zero.
Calculation:
\(\begin{vmatrix} \rm x-a & \rm y-b & \rm z-c\\ \rm a & \rm b & \rm c \\ \rm x & \rm y & \rm z \end{vmatrix}\)
Apply R3 → R3 - R2
= \(\begin{vmatrix} \rm x-a & \rm y-b & \rm z-c\\ \rm a & \rm b & \rm c \\ \rm x-a & \rm y-b & \rm z-c \end{vmatrix}\)
As we can see that the first and the third row of the given matrix are equal.
We know that, if any two rows (columns) of a matrix are same then the value of the determinant is zero.
\(\begin{vmatrix} \rm x-a & \rm y-b & \rm z-c\\ \rm a & \rm b & \rm c \\ \rm x & \rm y & \rm z \end{vmatrix}\) = 0
What is the value of the determinant \(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{i}}^2}}&{{{\rm{i}}^3}}\\ {{{\rm{i}}^4}}&{{{\rm{i}}^6}}&{{{\rm{i}}^8}}\\ {{{\rm{i}}^9}}&{{{\rm{i}}^{12}}}&{{{\rm{i}}^{15}}} \end{array}} \right|\) where \(\rm i = \sqrt {-1}\) ?
Answer (Detailed Solution Below)
Determinants Question 8 Detailed Solution
Download Solution PDFConcept:
\(\rm i = \sqrt {-1}\)
i2 = -1 , i3 = - i, i4 = 1, i6 = - 1 , i8 = 1 , i9 = i, i 12 = 1, and i15 = - i
Calculations:
Given determinant is \(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{i}}^2}}&{{{\rm{i}}^3}}\\ {{{\rm{i}}^4}}&{{{\rm{i}}^6}}&{{{\rm{i}}^8}}\\ {{{\rm{i}}^9}}&{{{\rm{i}}^{12}}}&{{{\rm{i}}^{15}}} \end{array}} \right|\)
Since, we have,
\(\rm i = \sqrt {-1}\)
i2 = -1 , i3 = - i, i4 = 1, i6 = - 1 , i8 = 1 , i9 = i, i 12 = 1, and i15 = - i
=\(\left| {\begin{array}{*{20}{c}} {\rm{i}}&{{{\rm{-1}}}}&{{{\rm{-i}}}}\\ {{{\rm{1}}}}&{{{\rm{-1}}}}&{{{\rm{1}}}}\\ {{{\rm{i}}}}&{{{\rm{1}}}}&{{{\rm{-i}}}} \end{array}} \right|\)
=i(i - 1) + 1(-i - i) - i (1 + i)
= i2 - i - 2i - i - i2
= - 4i
The system of equations kx + y + z = 1, x + ky + z = k and x + y + kz = k2 has no solution if k equals
Answer (Detailed Solution Below)
Determinants Question 9 Detailed Solution
Download Solution PDFConcept
Let the system of equations be,
a1x + b1y + c1z = d1
a2x + b2y + c2z = d2
a3x + b3y + c3z = d3
\(\; \Rightarrow \left[ {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right]\;\left[ {\begin{array}{*{20}{c}} x\\ y\\ z \end{array}} \right] = \;\left[ {\begin{array}{*{20}{c}} {{d_1}}\\ {{d_2}}\\ {{d_3}} \end{array}} \right]\)
⇒ AX = B
⇒ X = A-1 B = \(\frac{{{\rm{adj\;}}\left( {\rm{A}} \right)}}{{\det {\rm{\;}}({\rm{A}})}}\;B\)
⇒ If det (A) ≠ 0, the system is consistent having unique solution.
⇒ If det (A) = 0 and (adj A). B = 0, system is consistent, with infinitely many solutions.
⇒ If det (A) = 0 and (adj A). B ≠ 0, system is inconsistent (no solution)
Calculation:
Given:
kx + y + z = 1, x + ky + z = k and x + y + kz = k2
\( \Rightarrow {\rm{A}} = {\rm{}}\left[ {\begin{array}{*{20}{c}} {\rm{k}}&1&1\\ 1&{\rm{k}}&1\\ 1&1&{\rm{k}} \end{array}} \right],{\rm{B}} = {\rm{}}\left[ {\begin{array}{*{20}{c}} {\rm{x}}\\ {\rm{y}}\\ {\rm{z}} \end{array}} \right]{\rm{and\;C}} = \left[ {\begin{array}{*{20}{c}} 1\\ {\rm{k}}\\ {{{\rm{k}}^2}} \end{array}} \right]\)
⇒ For the given equations to have no solution, |A| = 0
\(\Rightarrow \left| {\begin{array}{*{20}{c}} {\rm{k}}&1&1\\ 1&{\rm{k}}&1\\ 1&1&{\rm{k}} \end{array}} \right| = 0\)
⇒ k(k2 – 1) - 1(k – 1) + 1(1 – k) = 0
⇒ k3 – k – k + 1 + 1 – k = 0
⇒ k3 -3k +2 = 0
⇒ (k – 1) (k – 1) (k + 2) = 0
⇒ k = 1, -2
If we put k = 1 in the above given equations, then all the equations will become the same.
Hence, the given equations have no solution if k = - 2.
If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {\rm{x}}&2\\ 4&{\rm{x }} \end{array}} \right]\) and det (A2) = 64, then x is equal to
Answer (Detailed Solution Below)
Determinants Question 10 Detailed Solution
Download Solution PDFConcept:
If \({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {{{\rm{a}}_{11}}}&{{{\rm{a}}_{12}}}\\ {{{\rm{a}}_{21}}}&{{{\rm{a}}_{22}}} \end{array}} \right]\) then determinant of A is given by:
|A| = a11 × a22 – a21 × a12
|An| = |A|n
Calculation:
Given that,
\({\rm{A}} = \left[ {\begin{array}{*{20}{c}} {\rm{x}}&2\\ 4&{\rm{x }} \end{array}} \right]\) and |A2| = 64
⇒ |A| = x2 - 8 .... (1)
Given |A2| = 64
⇒ |A|2 = 64 [∵ |An| = |A|n]
⇒ |A| = (64)1/2 = 8 ....(2)
From equation 1 and 2
⇒ x2 - 8 = 8
⇒ x2 = 16
⇒ x = ± 4Find the value of det(3A) for the following matrix:
\({\rm{A}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} 4&7&1\\ { - 1}&3&2\\ { - 2}&0&5 \end{array}} \right]\)
Answer (Detailed Solution Below)
Determinants Question 11 Detailed Solution
Download Solution PDFConcept:
1. Determinant of a 3 × 3 matrix:
- Let A be a 3 × 3 matrix given by:
\({\rm{A}} = {\rm{\;}}\left[ {\begin{array}{*{20}{c}} {\rm{a}}&{\rm{b}}&{\rm{c}}\\ {\rm{f}}&{\rm{e}}&{\rm{d}}\\ {\rm{g}}&{\rm{h}}&{\rm{i}} \end{array}} \right]\)
then the value of |A| also written as det(A) is:
det (A) = a (ei - dh) – b (fi - dg) + c (fh - eg)
2. Property of determinant of a matrix:
- Let A be a matrix of order n × n and det(A) = k. Then for a scaler c, the following property holds:
det(cA) = cn det(A)
Calculation:
First evaluate the determinant of the given matrix:
det(A) = 4(15 - 0) – 7(-5 + 4) + 1(0 + 6)
= 4(15) -7(-1) + 1(6)
= 60 + 7 + 6
= 73
Now using the property the value of det(3A) is:
det(3A) = 33 det(A)
= 27 × 73
= 1971
If the area of a triangle with vertices (-3, 0), (3, 0) and (0, k) is 9 square units, then what is the value of k?
Answer (Detailed Solution Below)
Determinants Question 12 Detailed Solution
Download Solution PDFConcept:
Area of a triangle with vertices (x1, y1) , (x2, y2), (x3, y3) is given by
Area = \(\rm \dfrac 12 \rm \begin{vmatrix} \rm x_1&\rm y_1 &1 \\ x_2& \rm y_2&1 \\ \rm\rm x_3 &\rm y_3&1 \end{vmatrix}\)
Calculations:
Given that, vertices of triangle are (-3, 0), (3, 0) and (0, k)
By using the above formula,
⇒ Area = \(\rm \dfrac 12 \rm \begin{vmatrix} \rm -3&\rm 0 &1 \\ 3& 0&1 \\ 0 &k&1 \end{vmatrix}\)
⇒ Area = \(\dfrac 12\)[-3(0 - k) - 0 + 1(3k)]
⇒ Area = 3k
According to the question, area of triangle is 9 square unit,
⇒ 3k = 9
⇒ k = 3
∴ Required value of k is 3 unit.
An equilateral triangle has each side equal to a. If the co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}\) equals:
Answer (Detailed Solution Below)
Determinants Question 13 Detailed Solution
Download Solution PDFConcept:
Area of equilateral triangle = \(\frac{\sqrt{3}}{4}\)×a2
Calculation:
Given: The co-ordinates of its vertices are (x1, y1); (x2, y2): (x3, y3) then the square of the determinant \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}\)
⇒ (△ ABC ) = \(\dfrac{1}{2}\) \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}\) = ( \(\frac{\sqrt{3}}{4}\)) ×a2
On squaring both side,
⇒ \(\dfrac{1}{4}\) \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}^2\) = \(\dfrac{3a^4}{16}\)
⇒ \(\begin{vmatrix} x_1 & y_1 & 1 \\\ x_2 & y_2& 1 \\\ x_3 & y_3 & 1 \end{vmatrix}^2\) = \(\dfrac{3a^4}{4}\)
What are the values of x that satisfy the equation \(\left| {\begin{array}{*{20}{c}} x&0&2\\ {2x}&2&1\\ 1&1&1 \end{array}} \right| + \left| {\begin{array}{*{20}{c}} {3x}&0&2\\ {{x^2}}&2&1\\ 0&1&1 \end{array}} \right| = 0\;?\)
Answer (Detailed Solution Below)
Determinants Question 14 Detailed Solution
Download Solution PDFConcept:
If \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}\\ {{a_{21}}}&{{a_{22}}} \end{array}} \right]\) then determinant of A is given by: |A| = (a11 × a22) - (a12 - a21).
If \(A = \left[ {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}}\\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}}\\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right]\) then determinant of A is given by:
|A| = a11 × {(a22 × a33) - (a23 × a32)} - a12 × {(a21 × a33) - (a23 × a31)} + a13 × {(a21 × a32) - (a22 × a31)}
Calculation:
\(\Rightarrow \left| {\begin{array}{*{20}{c}} x&0&2\\ {2x}&2&1\\ 1&1&1 \end{array}} \right| = x \times \left( {2 - 1} \right) - 0 \times \left( {2x - 1} \right) + 2 \times \left( {2x - 2} \right) = 5x - 4\)
\(\Rightarrow \left| {\begin{array}{*{20}{c}} {3x}&0&2\\ {{x^2}}&2&1\\ 0&1&1 \end{array}} \right| = 3x \times \left( {2 - 1} \right) - 0 \times \left( {{x^2} - 0} \right) + 2 \times \left( {{x^2} - 0} \right) = 2{x^2} + 3x\)
\(\Rightarrow \left| {\begin{array}{*{20}{c}} x&0&2\\ {2x}&2&1\\ 1&1&1 \end{array}} \right| + \left| {\begin{array}{*{20}{c}} {3x}&0&2\\ {{x^2}}&2&1\\ 0&1&1 \end{array}} \right| = \left( {5x - 4} \right) + \left( {2{x^2} + 3x} \right) = 2{x^2} + 8x - 4 = 0\)
⇒ 2x2 + 8x - 4 = 0
By comparing the equation 2x2 + 8x - 4 = 0 with ax2 + bx + c = 0, we get a = 2, b = 8 and c = - 4.
\(\Rightarrow x = \frac{{ - b \pm \sqrt {{b^2} - 4ac\;} }}{{2a}} = \frac{{ - 8 \pm \sqrt {64 + 32} }}{4} = - 2 \pm \sqrt 6 \)If A is a 2 × 2 matrix and |A| = 5, what is |5A| ? (| | denotes determinant)
Answer (Detailed Solution Below)
Determinants Question 15 Detailed Solution
Download Solution PDFConcept:
Properties of determinants:
For a n×n matrix A, det(kA) = kn det(A).
Calculation:
Given:
|A| = 5
k = 5
From the properties of the determinants, we know that |KA| = Kn |A|, where n is the order of the determinant.
Here, n = 2, therefore, the answer is K2 |A|.
|5A| = 52|A|
|5A| = 52 × 5 = 125