Scalar and Vector Product MCQ Quiz in मल्याळम - Objective Question with Answer for Scalar and Vector Product - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 15, 2025
Latest Scalar and Vector Product MCQ Objective Questions
Top Scalar and Vector Product MCQ Objective Questions
Scalar and Vector Product Question 1:
If \(\rm |\overrightarrow{a} .\overrightarrow{b}| = |\overrightarrow{a} \times \overrightarrow{b}|\) then, find the angle between \(\rm \overrightarrow{a} \) and \(\rm \overrightarrow{b} \)
Answer (Detailed Solution Below)
Scalar and Vector Product Question 1 Detailed Solution
Concept:
Scalar Product of Two Vectors - \(\rm \overrightarrow{a} .\overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| cos\ θ \)
Vector Product of Two Vectors - \(\rm \overrightarrow{a} \times \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| sin\ θ \: \widehat{n} \)
\(\: \widehat{n}\) is the unit vector perpendicular vector, θ being the angle between \(\rm \overrightarrow{a} \) and \(\rm \overrightarrow{b} \)
Calculation:
Given
\(\rm |\overrightarrow{a} .\overrightarrow{b}| = |\overrightarrow{a} \times \overrightarrow{b}|\)
⇒ \(\rm |\overrightarrow{a}| |\overrightarrow{b}| \cos θ = |\overrightarrow{a}| |\overrightarrow{b}| \sin θ \)
⇒ cos θ = sin θ
⇒ tan θ = 1
⇒ θ = \(\rm \frac{\pi}{4}\)
The angle between \(\rm \overrightarrow{a} \) and \(\rm \overrightarrow{b} \) is \(\rm \frac{\pi}{4}\)
Scalar and Vector Product Question 2:
If in a right-angled triangle ABC, hypotenuse AC = p, then what is \(\overrightarrow {AB} \cdot \overrightarrow {AC} + \overrightarrow {BC} \; \cdot \overrightarrow {BA} + \overrightarrow {CA} \cdot \overrightarrow {CB} \) equal to?
Answer (Detailed Solution Below)
Scalar and Vector Product Question 2 Detailed Solution
Calculation:
Given: In the right-angled triangle ABC, hypotenuse AC = p
As we can see from the above diagram angle between vector \(\overrightarrow {BC} \;and\;\overrightarrow {BA}\) is 90° ⇒ \(\overrightarrow {BC} \; \cdot \overrightarrow {BA} = 0\)
\(\Rightarrow \;\overrightarrow {AB} \cdot \overrightarrow {AC} + \overrightarrow {BC} \; \cdot \overrightarrow {BA} + \overrightarrow {CA} \cdot \overrightarrow {CB} = \;\overrightarrow {AB} \cdot \overrightarrow {AC} + \;\overrightarrow {CA} \cdot \overrightarrow {CB}\)
\(\Rightarrow \;\overrightarrow {AB} \cdot \overrightarrow {AC} + \overrightarrow {BC} \; \cdot \overrightarrow {BA} + \overrightarrow {CA} \cdot \overrightarrow {CB} = \overrightarrow {AB} \cdot \overrightarrow {AC} + \;\overrightarrow {AC} \cdot \overrightarrow {BC}\)
\( = \;\overrightarrow {AC} \cdot \left( {\overrightarrow {AB} + \;\overrightarrow {BC} } \right) = \overrightarrow {AC} \cdot \;\overrightarrow {AC} = {\left| {\overrightarrow {AC} } \right|^2}\)
\(\Rightarrow \;\overrightarrow {AB} \cdot \overrightarrow {AC} + \overrightarrow {BC} \; \cdot \overrightarrow {BA} + \overrightarrow {CA} \cdot \overrightarrow {CB} = {p^2}\)Scalar and Vector Product Question 3:
Let \(\vec a, \vec b\) and \(\vec c\) be three vector having magnitudes 1, 1 and 2 respectively, If \(\vec a \times (\vec a \times \vec c) - \vec b = 0\) then the acute angle between \(\vec a\) and \(\vec c\) is
Answer (Detailed Solution Below)
Scalar and Vector Product Question 3 Detailed Solution
Concept:
Vector Triple Product: Vector Triple Product is a vector quantity.
Vector triple product of three vectors a, b, c is defined as the cross product of vector a with the cross product of vectors b and c, i.e. a × (b × c)
a × (b × c) = (a . c) b – (a . b) c
a.b = |a||b|cos θ
Calculation:
Here, |a| = 1, |b| = 1, |c| = 2
\(\rm \vec a × (\vec a × \vec c) - \vec b = 0\)
\(\rm (\vec a.\vec c)\vec a-(\vec a.\vec a)\vec c-\vec b=0\)
\( \rm (\vec a.\vec c)\vec a=(\vec a.\vec a)\vec c+\vec b\)
\(\rm (|a||c|cosθ)\vec a=(|a||a|cos 0)\vec c+\vec b\)
\(\rm 2\cos θ\; \vec{a} = \vec{c}+\vec{b}\)
\(\rm 2\cos θ\; \vec{a} - \vec{c}=\vec{b}\)
Taking magnitude both sides, we get
4cos2 θ |a|2 + |c|2 - 2 × 2cos θ \(\rm \vec a \cdot \vec c\) = |b|2
4cos2 θ + 4 - 2 × 2cos θ × |a||c|cos θ = 1
4cos2 θ + 4 - 8cos2 θ = 1
4cos2 θ = 3
cos2 θ = \(\frac 3 4\)
cos θ = \(\frac {\sqrt{3}}{2}\)
∴ θ = π / 6
Hence, option (2) is correct.Scalar and Vector Product Question 4:
If \(\rm \vec a.\vec b=3\) and \(\rm |\vec a\times\vec b|=3\sqrt3\), then what is the angle between \(\rm \vec a\) and \(\rm \vec b\)?
Answer (Detailed Solution Below)
Scalar and Vector Product Question 4 Detailed Solution
Concept:
For two vectors \(\rm \rm \vec A\) and \(\rm \vec B\) at an angle θ to each other:
- Dot Product is defined as \(\rm \vec A.\vec B=\left|\vec A\right|\left|\vec B\right|\cos \theta\).
- Cross Product is defined as \(\rm \vec A\times \vec B=\hat n\left|\vec A\right|\left|\vec B\right|\sin \theta\) where \(\rm \hat n\) is the unit vector perpendicular to the plane containing \(\rm \rm \vec A\) and \(\rm \vec B\).
Calculation:
According to the question:
\(\rm \vec a.\vec b=\left|\vec a\right|\left|\vec b\right|\cos \theta=3\) ...(1)
\(\rm |\vec a\times\vec b|=|\hat n\left|\vec a\right|\left|\vec b\right|\sin\theta|=3\sqrt3\)
As we know, \(\rm | \hat n| = 1\)
\(\rm \left|\vec a\right|\left|\vec b\right|\sin\theta=3\sqrt3\) ...(2)
Dividing (2) by (1), we get:
tan θ = √3
⇒ θ = \(\rm \frac{\pi}{3}\).
Scalar and Vector Product Question 5:
If \(\vec a, \vec b, \vec c\) are vectors such that \(\vec a + \vec b + \vec c = 0\) and \(|\vec a| = 10, |\vec b| = 4, |\vec c| = 6\), then the angle between the vectors \(\vec b\) and \(\vec c\) is?
Answer (Detailed Solution Below)
Scalar and Vector Product Question 5 Detailed Solution
Concept:
\(\rm \vec a.\vec b=|\vec a||\vec b|\cos\theta \)
Calculation:
Here, \(\vec a + \vec b + \vec c = 0\)
\(\Rightarrow \vec b + \vec c = -\vec a\)
Taking magnitude and squaring both sides,
\(\rm \Rightarrow | \vec b + \vec c|^2 = |-\vec a|^2\)
\(\rm \Rightarrow |\vec b|^2+|\vec c|^2+2\vec b.\vec c =100\)
\(\rm \Rightarrow 2 |\vec b|.|\vec c|cos θ =100-(16 + 36)\)
\(\\ \rm \Rightarrow cosθ =\frac{48}{2\;\times\; 4 \;\times\; 6}\)
\(\Rightarrow θ =cos^{-1}(1)\)
θ = 0°
Hence, option (1) is correct.
Scalar and Vector Product Question 6:
If \(\vec a = \left(\vec i + 2\vec j - 3\vec k\right)\) and \(\vec b = \left(3\vec i - \vec j + 2\vec k\right)\) then the angle between \(\left(\vec a + \vec b\right)\) and \(\left(\vec a - \vec b\right)\) is?
Answer (Detailed Solution Below)
Scalar and Vector Product Question 6 Detailed Solution
Concept:
a.b = |a||b|cosθ
Calculation:
Here, \(\rm \vec a = \left(\vec i + 2\vec j - 3\vec k\right)\) and \(\vec b = \left(3\vec i - \vec j + 2\vec k\right)\)
\(\rm \left(\vec a + \vec b\right) = (\vec i + 2\vec j - 3\vec k )+(\vec 3i -\vec j +2\vec k)\\=\vec 4i + \vec j - \vec k\\ |\rm (\vec a + \vec b)|=\sqrt{4^2+1^2+(-1)^2}\\ =\sqrt{18}\\=3\sqrt2\)
\(\rm \left(\vec a - \vec b\right) = (\vec i + 2\vec j - 3\vec k )-(\vec 3i -\vec j +2\vec k)\\ =-\vec 2i + \vec3 j - \vec 5 k\\ |\rm (\vec a - \vec b)|=\sqrt{(-2)^2+3^2+(-5)^2}\\ =\sqrt{38}\\\)
Now,
\(\rm \left(\vec a +\vec b\right) .\left(\vec a - \vec b\right) =(\vec 4i + \vec j - \vec k) \cdot (-\vec 2i + \vec3 j - \vec 5 k)= -8+3+5\\ |\left(\vec a + \vec b\right)||\left(\vec a - \vec b\right)|cosθ =0\\ \Rightarrow θ = \frac \pi 2\)
Hence, option (3) is correct.Scalar and Vector Product Question 7:
Find the angle between the vectors \(\vec a = 3\hat i - 2\hat j + \;\hat k\;and\;\vec b = \;\hat i - 2\hat j - 3\hat k\) ?
Answer (Detailed Solution Below)
Scalar and Vector Product Question 7 Detailed Solution
Concept:
- If \(\vec a\;and\;\vec b\) are two vectors, then the scalar product between the given vectors is given by: \(\vec a \cdot \;\vec b = \left| {\vec a} \right| \times \left| {\vec b} \right| \times \cos θ \)
- If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \cdot \;\vec b = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
- If \(\vec a = \;{a_1}\hat i + {a_2}\hat j + {a_3}\hat k\) is a vector then the magnitude of the vector is given by \(\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2 + a_3^2} \;\)
Given: \(\vec a = 3\hat i - 2\hat j + \;\hat k\;and\;\vec b = \;\hat i - 2\hat j - 3\hat k\)
As we know that, \(\vec a \cdot \;\vec b = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
\(\vec a \cdot \;\vec b = 3 + 4 - 3 = 4\)
As we know that, if \(\vec a = \;{a_1}\hat i + {a_2}\hat j + {a_3}\hat k\) is a vector then the magnitude of the vector is given by \(\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2 + a_3^2} \;\)
Scalar and Vector Product Question 8:
Consider the following equations for two vectors \(\vec{a}\) and \(\vec{b}\)
1. \(\left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}-\vec{b} \right)={{\left| {\vec{a}} \right|}^{2}}-{{\left| {\vec{b}} \right|}^{2}}\)
2. \(\left( \left| \vec{a}+\vec{b} \right| \right)\left( \left| \vec{a}-\vec{b} \right| \right)={{\left| {\vec{a}} \right|}^{2}}-{{\left| {\vec{b}} \right|}^{2}}\)
3. \({{\left| \vec{a}\cdot \vec{b} \right|}^{2}}+{{\left| \vec{a}\times \vec{b} \right|}^{2}}={{\left| {\vec{a}} \right|}^{2}}{{\left| {\vec{b}} \right|}^{2}}\)
Which of the above statement are correct?Answer (Detailed Solution Below)
Scalar and Vector Product Question 8 Detailed Solution
Concept:
Let \(\vec{u}\) be a vector then \({{\left| {\vec{u}} \right|}^{2}}=~\vec{u}\cdot ~\vec{u}\)
Calculation:
\(\left( \vec{a}+\vec{b} \right)\cdot \left( \vec{a}-\vec{b} \right)=\\{{\left| {\vec{a}} \right|}^{2}}-\left| {\vec{a}} \right|\times \left| {\vec{b}} \right|\times \cos \theta +\left| {\vec{a}} \right|\times \left| {\vec{b}} \right|\times \cos \theta -{{\left| {\vec{b}} \right|}^{2}}=~{{\left| {\vec{a}} \right|}^{2}}-{{\left| {\vec{b}} \right|}^{2}}\)
Hence, statement 1 is true.
\(\left( \left| \vec{a}+\vec{b} \right| \right)\left( \left| \vec{a}-\vec{b} \right| \right)=\\\sqrt{{{\left| {\vec{a}} \right|}^{2}}+{{\left| {\vec{b}} \right|}^{2}}+2\times \left| {\vec{a}} \right|\times \left| {\vec{b}} \right|\times \cos \theta }~\times ~\sqrt{{{\left| {\vec{a}} \right|}^{2}}+{{\left| {\vec{b}} \right|}^{2}}-2\times \left| {\vec{a}} \right|\times \left| {\vec{b}} \right|~\times \cos \theta }\)
If cos θ = 1
\(\Rightarrow \left( \left| \vec{a}+\vec{b} \right| \right)\left( \left| \vec{a}-\vec{b} \right| \right)={{\left| {\vec{a}} \right|}^{2}}-{{\left| {\vec{b}} \right|}^{2}}\)
But if cos θ ≠ 1
\(\Rightarrow \left( \left| \vec{a}+\vec{b} \right| \right)\left( \left| \vec{a}-\vec{b} \right| \right)\ne {{\left| {\vec{a}} \right|}^{2}}-{{\left| {\vec{b}} \right|}^{2}}\)
Hence, statement 2 is not true .
\({{\left| \vec{a}\cdot \vec{b} \right|}^{2}}+{{\left| \vec{a}\times \vec{b} \right|}^{2}}=\\{{\left| {\vec{a}} \right|}^{2}}\times {{\left| {\vec{b}} \right|}^{2}}\times {{\cos }^{2}}\theta +~{{\left| {\vec{a}} \right|}^{2}}\times {{\left| {\vec{b}} \right|}^{2}}\times {{\sin }^{2}}\theta =~{{\left| {\vec{a}} \right|}^{2}}{{\left| {\vec{b}} \right|}^{2}}\)
Hence, statement 3 is true.Scalar and Vector Product Question 9:
Let \(\overrightarrow{a} = \hat i + \hat j + \hat k, \overrightarrow{b}=\hat i - \hat j + \hat k \ and \ \overrightarrow{c}=\hat i - \hat j - \hat k\) be three vectors. A vector \(\overrightarrow{v} \) in the plane of \(\overrightarrow{a} \) and \(\overrightarrow{b} \), whose projection on \(\overrightarrow{c} \) is \(\frac{1}{\sqrt3}\), is given by,
Answer (Detailed Solution Below)
Scalar and Vector Product Question 9 Detailed Solution
Concept:
If vector v = ai + bj + ck, then magnitude of vector v is \( √ {a^2+b^2+c^2}\).
Projection of vector v on c is \(\frac{\overrightarrow{v}.\overrightarrow{c}}{\mid\overrightarrow{c}\mid}\)A vector \(\overrightarrow{v} \) in the plane of \(\overrightarrow{a} \) and \(\overrightarrow{b} \) is \(\overrightarrow{v}=\overrightarrow{a}+\lambda \overrightarrow{b}\)
Calculation:
A vector \(\overrightarrow{v} \) in the plane of \(\overrightarrow{a} \) and \(\overrightarrow{b} \) is
\(\overrightarrow{v}=\overrightarrow{a}+\lambda \overrightarrow{b}\)
⇒ \(\overrightarrow{v} = (\hat i + \hat j + \hat k)+\lambda(\hat i-\hat j + \hat k)\)
⇒ \(\overrightarrow{v} \) = \({(1+\lambda)\hat i+(1-\lambda)\hat j+(1+\lambda)\hat k}\)
Projection of \(\overrightarrow{v} \) on \(\overrightarrow{c} = \frac{1}{√3}\)(given)
⇒ \(\frac{\overrightarrow{v}.\overrightarrow{c}}{\mid\overrightarrow{c}\mid} = \frac{1}{√3}\)
⇒ \(\frac{(1+\lambda)-(1-\lambda)-(1+\lambda)}{√3}=\frac{1}{√3}\) [\( \mid \overrightarrow{c}\mid =\sqrt{{1^2+1^2+1^2}}\) = √3]
⇒ \((1+\lambda)-(1-\lambda)-(1+\lambda)=1 \)
⇒ \(\lambda=2 \)
\(\overrightarrow{v}=3\hat i -\hat j +3 \hat k\)
∴ Vector \(\overrightarrow{v}=3\hat i -\hat j +3 \hat k\)
Scalar and Vector Product Question 10:
If \(\left| {\vec a} \right| = 2,\;\left| {\vec b} \right| = 5\;and\left| {\vec a \times \;\vec b} \right| = 8\), then find the value of \(\vec a \cdot \;\vec b\)
Answer (Detailed Solution Below)
Scalar and Vector Product Question 10 Detailed Solution
Concept:
I. If \(\vec a\;and\;\vec b\) are two vectors, then the scalar product between the given vectors is given by:
\(\vec a \cdot \;\vec b = \left| {\vec a} \right| \times \left| {\vec b} \right| \times \cos \theta \)
II. If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \times \;\vec b = \;\;\left| {\vec a} \right| \times \left| {\vec b} \right| \times \sin \theta \times \;\hat n,\;where\;\hat n\) is the unit vector perpendicular to both \(\vec a\;and\;\vec b\)
Calculation:
Given: \(\left| {\vec a} \right| = 2,\;\left| {\vec b} \right| = 5\;and\left| {\vec a \times \;\vec b} \right| = 8\)
As we know that, If \(\vec a = {a_1}\hat i + {a_2}\hat j + {a_3}\hat k\;and\;\vec b = {b_1}\hat i + {b_2}\hat j + {b_3}\hat k\) then \(\vec a \times \;\vec b = \;\;\left| {\vec a} \right| \times \left| {\vec b} \right| \times \sin \theta \times \;\hat n,\;where\;\hat n\) is the unit vector perpendicular to both \(\vec a\;and\;\vec b\)
\(\left| {\vec a \times \;\vec b} \right| = \left| {\vec a} \right| \times \left| {\vec b} \right| \times \left| {\sin \theta } \right| \times \left| {\hat n} \right| = \;\left| {\vec a} \right| \times \left| {\vec b} \right| \times \sin \theta \)
\( \Rightarrow \sin \theta = \frac{{\left| {\vec a \times \;\vec b} \right|}}{{\left| {\vec a} \right| \times \left| {\vec b} \right|}} = \frac{8}{{10}} = \frac{4}{5}\)
\( \Rightarrow \cos \theta = \frac{3}{5}\)
\( \Rightarrow \cos \theta \; = \;\frac{3}{5}\)
As we know that, If \(\vec a\;and\;\vec b\) are two vectors, then the scalar product between the given vectors is given by: \(\vec a \cdot \;\vec b = \left| {\vec a} \right| \times \left| {\vec b} \right| \times \cos \theta \)
\( \Rightarrow \vec a \cdot \;\vec b = 2 \times 5 \times \frac{3}{5} = 6\)