Applications of Vectors MCQ Quiz in मल्याळम - Objective Question with Answer for Applications of Vectors - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 22, 2025

നേടുക Applications of Vectors ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Applications of Vectors MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Applications of Vectors MCQ Objective Questions

Top Applications of Vectors MCQ Objective Questions

Applications of Vectors Question 1:

Let O be the circumcentre, G be the centroid and O’ be the orthocentre of a triangle ABC. Three vectors are taken through O and are represented by

a=OA,b=OBandc=OC,thena+b+c is

  1. OG
  2. 2OG
  3. OO
  4. None of these

Answer (Detailed Solution Below)

Option 3 : OO

Applications of Vectors Question 1 Detailed Solution

Concept:

1. Circumcentre: The point of intersection of perpendicular bisectors of all the sides of a triangle is known as the circumcentre.

2. Orthocentre: The point of intersection of all the 3 altitudes of a triangle is known as the orthocentre.

3. Centroid: The point of intersection of all the 3 medians of a triangle is known as the centroid.

4. The orthocentre, centroid and circumcentre of any triangle are collinear. The centroid divides the distance from orthocentre to the circumcentre in the ratio 2 : 1.

F2 A.K 6.3.20 Savita D4

Calculation:

Here, O is the circumcentre, G is the centroid and O’ is the orthocentre of a triangle ABC.

We know that, the centroid divides the distance from orthocentre to the circumcentre in the ratio 2 : 1.

i.e G divides the line segment joining O and O’ in the ratio of 2 : 1.

a+b+c=OA+OB+OC=(AO)+(BO)+(CO)a+b+c=(A+B+C)3×O

a+b+c=3×[(A+B+C3)O]

a+b+c=3×[GO]3×G=2×O+O

OO=3×(GO)OO=3×(GO)OO=a+b+c

Applications of Vectors Question 2:

The adjacent sides of AB and AC of a triangle ABC are represented by the vectors -2i + 3j + 2k and -4i + 5j + 2k respectively. The area of the triangle ABC is

  1. 6 square units
  2. 5 square units
  3. 4 square units
  4. 3 square units

Answer (Detailed Solution Below)

Option 4 : 3 square units

Applications of Vectors Question 2 Detailed Solution

Concept:

Magnitude of a vector:

Magnitude of a vector a¯=ai+bj+ck is given by |a¯|=a2+b2+c2.

Area of triangle:

If the vectors a¯ and b¯ form adjacent sides of the triangle then the area of the triangle is given by: A=12|a¯×b¯|

Cross product of the vectors:

For two vectors a¯=ai+bj+ck and b¯=di+ej+fk the cross product is given by: a¯×b¯=|ijkabcdef|

 

Calculation:

Let the vectors be a¯=2i+3j+2k and b¯=4i+5j+2k.

First we will calculate the cross product as follow:

a¯×b¯=|ijk232452|=i(610)j(4+8)+k(10+12)=4i4j+2k

Therefore, the magnitude of the cross product is:

|a¯×b¯|=16+16+4=6

Using the formula for the area of the triangle, the area is given by:

A=12|a¯×b¯|=12×6=3

Thus, the area of the triangle is 3 square units.

 

Applications of Vectors Question 3:

Two adjacent sides of a parallelogram are 2î - 4ĵ + 5k̂ and î - 2ĵ - 3k̂. What is the magnitude of dot product of vectors which represent its diagonals? 

  1. 21
  2. 25
  3. 31
  4. 36

Answer (Detailed Solution Below)

Option 3 : 31

Applications of Vectors Question 3 Detailed Solution

Concept:

Triangle Law of Vector Addition: Triangle law of vector addition states that when two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.

F1 Aman 21.11.20 Pallavi D3

 

R=a+b

Parallelogram law of vector addition: 

If two vectors are acting simultaneously at a point, then it can be represented both in magnitude and direction by the adjacent sides drawn from a point. Therefore, the resultant vector is completely represented both in direction and magnitude by the diagonal of the parallelogram passing through the point

F1 Aman 21.11.20 Pallavi D4.1

c=a+b

 

Calculation:

F1 Aman 21.11.20 Pallavi D5

Here, vector a and b are adjacent sides of parallelogram

a = 2î - 4ĵ + 5k̂ and b = î - 2ĵ - 3k̂.

Let vector c and d are digonals of parallelogram 

Using parallelogram law, 

c=a+b

= (2î - 4ĵ + 5k̂) + (î - 2ĵ - 3k̂)

=.3i^6j^+2k^

Now using triangle law,

b+d=ad=ab

= (2î - 4ĵ + 5k̂) - (î - 2ĵ - 3k̂)

i^2j^+8k^

c.d=(3i^6j^+2k^).(i^2j^+8k^)=3+12+16=31

Hence, option (3) is correct.

Applications of Vectors Question 4:

The vectors AB=3i^+4k^ and AC=5i^2j^+4k^ are the sides of a triangle ABC. The length of the median through A is,

  1. 18
  2. 72
  3. 33
  4. 288

Answer (Detailed Solution Below)

Option 3 : 33

Applications of Vectors Question 4 Detailed Solution

Concept:

Referring to the diagram,

From the law of addition of vectors,

AB+BD=AD and AC+CD=AD

F2 Madhuri Engineering 15.07.2022 D2

Calculation:

2AD=AB+BD+AC+CD

AD=AB+AC2[BD=CD]

AD=(3+5)i+(02)j+(4+4)k2=4ij+4k

|AD|=16+16+1=33.

Applications of Vectors Question 5:

Constant forces P = 2î - 5ĵ + 6k̂ and Q = -î + 2ĵ - k̂ act on a particle. The work done when the particle is displaced from A whose position vector is 4î - 3ĵ - 2k̂, to B whose position vector is 6î + ĵ - 3k̂, is:

  1. 10 units.
  2. -15 units.
  3. -50 units.
  4. 25 units.

Answer (Detailed Solution Below)

Option 2 : -15 units.

Applications of Vectors Question 5 Detailed Solution

Concept:

If two points A and B have position vectors A and B respectively, then the vector AB=BA.

For two vectors A and B at an angle θ to each other:

  • Dot Product is defined as: A.B=|A||B|cosθ.
  • Resultant Vector is equal A+B.
  • Work: The work (W) done by a force (F) in moving (displacing) an object along a vector D is given by: W = F.D=|F||D|cosθ.

 

Calculation:

Let's say that the forces acting on the particle are P = 2î - 5ĵ + 6k̂ and Q = -î + 2ĵ - k̂.

∴ The resulting force acting on the particle will be F=P+Q.

⇒ F = (2î - 5ĵ + 6k̂) + (-î + 2ĵ - k̂)

⇒ F = î - 3ĵ + 5k̂.

Since the particle is moved from the point 4î - 3ĵ - 2k̂ to the point 6î + ĵ - 3k̂, the displacement vector D will be:

D=AB=BA

= (6î + ĵ - 3k̂) - (4î - 3ĵ - 2k̂)

⇒ ​D = 2î + 4ĵ - k̂.

And finally, the work done W will be:

W = F.D = (î - 3ĵ + 5k̂).(2î + 4ĵ - k̂)

⇒ W = (1)(2) + (-3)(4) + (5)(-1)

⇒ W = 2 - 12 - 5 =

∴ -15 units.

Applications of Vectors Question 6:

What is the area of a triangle whose vertices are at (3, -1, 2), (1, -1, -3) and (4, -3, 1) ?

  1. 1652
  2. 1352
  3. 4
  4. 2

Answer (Detailed Solution Below)

Option 1 : 1652

Applications of Vectors Question 6 Detailed Solution

Concept:

Let A, B , and C be the vertices of the ABC , then the area of that triangle = 12×|AB×AC|

 

Calculations:

Given, triangle whose vertices are at A = (3, -1, 2) = 3ij+2k

B = (1, -1, -3) =  ij3k

and C = (4, -3, 1) =  4i3j+k

Let A, B , and C be the vertices of the ABC , then the area of that triangle = 12×|AB×AC|

AB=(ij3k)(3ij+2k)

AB=2i+0k5k

 

AC=(4i3j+k)(3ij+2k)

⇒ AC=i2jk

Now, AB×AC=|ijk205121|

AB×AC=i(10)j(2+5)+k(40)

AB×AC=10i7j+4k

⇒ |AB×AC|=(10)2+(7)2+(4)2

|AB×AC|=165

The area of that triangle = 12×|AB×AC|

⇒ The area of that triangle = 12×165
Hence, the area of a triangle whose vertices are at (3, -1, 2), (1, -1, -3) and (4, -3, 1) is 1652

Applications of Vectors Question 7:

Assume that a particle is displaced from point A = (2, - 6, 1) to the point B = (5, 9, 7) under the influence of force F=2i^+j^+k^. Find the work done in displacing the particle from point A to B.

  1. 30 units
  2. 25 units
  3. 27 units
  4. 20 units

Answer (Detailed Solution Below)

Option 3 : 27 units

Applications of Vectors Question 7 Detailed Solution

Concept:

I. If a particle is displace from point A to B under the influence of force F. Then the work done in displacing the particle from point A to B is given by: W=Fd

II. If a=a1i^+a2j^+a3k^andb=b1i^+b2j^+b3k^ then ab=a1b1+a2b2+a3b3

Calculation:

Given: Particle is displace from point A = (2, - 6, 1) to the point B = (5, 9, 7) under the influence of force F=2i^+j^+k^

So, the displacement of particle is given by:

d=AB=(5i^+9j^+7k^)(2i^6j^+k^)=3i^+15j^+6k^

As we know that, If a particle is displace from point A to B under the influence of force F. Then the work done in displacing the particle from point A to B is given by: W=Fd

W=Fd=(2i^+j^+k^)(3i^+15j^+6k^)=6+15+6=27units

Applications of Vectors Question 8:

Let A(2, 3 ,5) and C(-3, 4,-2) be opposite vertices of a parallelogram ABCD if the diagonal BD=i^+2j^+3k^ then the area of the parallelogram is equal to

  1. 12410
  2. 12474
  3. 12586
  4. 12306

Answer (Detailed Solution Below)

Option 2 : 12474

Applications of Vectors Question 8 Detailed Solution

Calculation

AC=5i^1j^+7k^

BD=i^+2j^+3k^

Area = |AC × BD|

⇒ |i^j^k^517123|

⇒ 12|17i^8j^+11k^|=12474

Hence option(2} is correct

Applications of Vectors Question 9:

Forces of magnitude 5, 3, 1 units acts in directions 6i + 2j + 3k, 3i -2j + 6k, 2i - 3j - 6k respectively on a particle which is displaced the point (2, -1, -3) to (5, -1, 1). The total work done by the force is

  1. 21 units
  2. 5 units
  3. 33 units
  4. 105 units

Answer (Detailed Solution Below)

Option 3 : 33 units

Applications of Vectors Question 9 Detailed Solution

Concept:

The work done W=(Fr)(dx) 

where Fr is the resultant force, and  dx is the displacement 

The unit vector in the direction of a P=P^=P|P| 

Calculation:

The initial position of the particle (A) = 2i - j - 3k

The initial position of the particle (B) = 5i - j + k

Displacement dx = B - A = (5i - j + k) - (2i - j - 3k) = 3i + 4k

First force F1 = magnitude of the 1st force × unit vector in the given direction

⇒ F1=5×6i+2j+3k|6i+2j+3k| 

⇒ \boldsymbolF1=30i+10j+15k7 

Second force F2 = magnitude of the 2nd force × unit vector in the given direction

⇒ F2=3×3i2j+6k|3i2j+6k| 

⇒ \boldsymbolF2=9i6j+18k7 

Third force F3 = magnitude of the 3rd force × unit vector in the given direction

⇒ F3=1×2i3j6k|2i3j6k| 

⇒ \boldsymbolF3=2i3j6k7 

Resultant Force Fr=F1+F2+F3 

⇒ Fr=30i+10j+15k7+9i6j+18k7+2i3j6k7

⇒ \boldsymbolFr=41i+j+27k7 

The work done by the forces:

W=(Fr)(dx)

⇒ W=(41i+j+27k7)(3i+4k) 

⇒ W=(123+0+1087)=2317 

⇒ \boldsymbolW=33 units

Applications of Vectors Question 10:

Find the value of λ, for which the vectors a=2i^j^+k^,b=i^+2j^+3k^andc=3i^+λj^+5k^ are coplanar?

  1. 2
  2. - 2
  3. 4
  4. None of these

Answer (Detailed Solution Below)

Option 1 : 2

Applications of Vectors Question 10 Detailed Solution

CONCEPT:

If vectors a,b and c are coplanar then [abc]=0 where [abc]=a(b×c)=|a1a2a3b1b2b3c1c2c3|

CALCULATION:

Given: Vectors a=2i^j^+k^,b=i^+2j^+3k^andc=3i^+λj^+5k^ are coplanar

As we know that, if vectors a,b and c are coplanar then [abc]=0 where [abc]=a(b×c)=|a1a2a3b1b2b3c1c2c3|

Here, a1 = 2, b1 = - 1, c1 = 1

Similarly, a2 = 1, b2 = 2, c2 = 3

Similarly, a3 = 3, b3 = λ, c3 = 5

[a b c]=|21312λ135|=105λ

∵ The given vectors are coplanar

⇒ 10 - 5λ = 0

⇒ λ = 2

Hence, option A is the correct answer.

Get Free Access Now
Hot Links: teen patti 500 bonus teen patti real money app teen patti wink teen patti tiger teen patti yes