Random Variables Basics MCQ Quiz in मल्याळम - Objective Question with Answer for Random Variables Basics - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 19, 2025

നേടുക Random Variables Basics ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Random Variables Basics MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Random Variables Basics MCQ Objective Questions

Top Random Variables Basics MCQ Objective Questions

Random Variables Basics Question 1:

A discrete random variable X has possible values xi = i2, where i = 1, 2, 3, 4. Which occurs with probabilities 0.2, 0.2, 0.3 and 0.3. The variance of E[X2] is:

  1. 95
  2. 32.32
  3. 104.5
  4. None

Answer (Detailed Solution Below)

Option 3 : 104.5

Random Variables Basics Question 1 Detailed Solution

Concept:

E[X2]=xi2P(xi)

Calculation:

Givenxi = i2, where i = 1, 2, 3, 4.

Xi

1

4

9

16

F(xi)

0.2

0.2

0.3

0.3

E[X2]=xi2P(xi)

= (1)2 × 0.2 + (4)2 × 0.2 + (9)2 × 0.3 + (16)2 × 0.3

= 0.2 + 16 × 0.2 + 81 × 0.3 + (16)2 × 0.3

= 0.2 + 3.2 + 24.3 + 76.8

= 104.5

Random Variables Basics Question 2:

If the expected value of a random variable X is 2 and its variance is 1, then what will be the variance of 3X + 4?

  1. 9
  2. 6
  3. 7
  4. 11

Answer (Detailed Solution Below)

Option 1 : 9

Random Variables Basics Question 2 Detailed Solution

Concept:

Var[aX+b]=a2Var(X)

V(ax)=a2V(x) where a is constant,

V(a)=0, i.e. variance of constant is zero ; where a is constant

Calculation:

Given:

Var(x)=1Var(3x+4)=?

Let y=3x+4

V(y)=V(3x+4)

V(y)=32[V(x)]

V(y)=9[1]

V(y)=V(3x+4)=9.

Random Variables Basics Question 3:

Let the random variable X have the density f(x) = kx if 0 ≤ x ≤ 3. Find P(|X − 1.8| < 0.6) up to two decimal places.

Answer (Detailed Solution Below) 0.47 - 0.49

Random Variables Basics Question 3 Detailed Solution

For any density function,

f(x)dx=1

03kxdx=1

k=29

P(|X − 1.8| < 0.6) = P(1.2 < X < 2.4)

=1.22.429xdx=19(2.421.22)=0.48

Random Variables Basics Question 4:

Let 𝑋 be a zero-mean unit variance Gaussian random variable. E[|𝑋|] is equal to _______.

Answer (Detailed Solution Below) 0.79 - 0.81

Random Variables Basics Question 4 Detailed Solution

Concept:

A Gaussian random variable X with mean μ and variance σ2 can be denoted as X N (μ, σ2) and its probability density function (pdf) is given by:

fx(x)=12πσ2e(xμ)2/2σ2

The expectation of any function of x is calculated as:

E[g(x)]=g(x)fx(x)dx

If f(-x) = f(x) then f(x) is said to be even function of x.

And, an even function satisfies:

f(x)dx=20f(x)dτ

Calculation:

Given:

X ∼ N (0, 1)

fX(x)=12πex2/2

E[|X|]=|x|fX(x)dx

=|x|12πex2/2dx

=12π|x|ex2/2dx

Since:

|x|ex2/2 is an even function of ‘x’, we can write:

E[|x|]=12π×20xex2/2dx

Using substitution of variables:

Letx22=y

xdx=dy

E[|x|]=12π×20eydy

=2π{ey|0=2π{10}

E[|x|]=2π0.798

E[|x|] ≃ 0.8

Random Variables Basics Question 5:

In the following table, x is the discrete random variable and p(x) is the probability density function. The standard deviation of x is

x

1

2

3

4

p(x)

0.2

0.4

0.3

0.1

  1. 0.3
  2. 0.5
  3. 0.7
  4. 0.9

Answer (Detailed Solution Below)

Option 4 : 0.9

Random Variables Basics Question 5 Detailed Solution

X

1

2

3

4

p(x)

0.2

0.4

0.3

0.1

xipi

0.2

0.8

0.9

0.4

xi2pi

0.2

1.6

2.7

1.6

 

(i=1nxipi)=0.2+0.8+0.9+0.4=2.3

(i=1nxi2pi)=0.2+1.6+2.7+1.6=6.1

var(X)=σ2=i=1nxi2pi(i=1nxipi)2

var(X) = σ2 = 6.1 – 5.29

var(X) = σ2 = 0.81

Standard deviation = σ =+√var = 0.9

Random Variables Basics Question 6:

Let X be the discrete random variable with PMF (x) = 12x; x = 1,2,3,.... The value of P(X > 4) is

  1. 1516
  2. 916
  3. 516
  4. 116

Answer (Detailed Solution Below)

Option 4 : 116

Random Variables Basics Question 6 Detailed Solution

Given

PMF(x) = 1/2x, x = 1, 2, 3 -----

Formula

P(X > 4) = 1 – P(X ≤ 4)

Calculation

P(X > 4) = 1 – P(X ≤ 4)

⇒ 1 – [P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)]

⇒ 1 – [1/21 + ½2  + ½3 + ½4]

⇒ 1 – [1/2 + ¼ + 1/8 + 1/16]

⇒ 1 – [(8 + 4 + 2 + 1)/16]

⇒ 1 – [15/16]

⇒ (16 – 15)/16

∴ The value of P(X > 4) is 1/16

 

Probability mass function or  PMF is defined as the set of ordered pair [x, f(x)] if for each possible outcome x, f(x) satisfies the following condition

F(x) ≥ 0

∑ f(x) = 1

Random Variables Basics Question 7:

Find the mean of x if x is a Poisson variate satisfying the condition P(3) = P(4)?

  1. 2
  2. 8
  3. 4
  4. 16

Answer (Detailed Solution Below)

Option 3 : 4

Random Variables Basics Question 7 Detailed Solution

Given

P(3) = P(4)

Concept

In poisson distribution = it is also a discrete distribution. Poisson distribution fulfil the limitation of nomal distribution

Poisson distribution is given by f(x) = (e × λx)/x!

Where x = 0, 1, 2, 3---- and λ = mean

Calculation

Here x = 3 and 4

(e × λ3)/3! = (e × λ4)/4!

⇒ λ  = 4!/3!

⇒ λ = 4

mean of x in poisson distribution is 4

Random Variables Basics Question 8:

X and Y are independent normal variables with mean 50 and 80 respectively and standard deviation as 4 and 3 respectively. What is the distribution of X + Y?

  1. N(130, 7)
  2. N(130, 3)
  3. N(130, 5)
  4. N(130, 4)

Answer (Detailed Solution Below)

Option 3 : N(130, 5)

Random Variables Basics Question 8 Detailed Solution

Given

X and Y are independent normal variables with

Mean (X) = 50

Mean (Y) = 80

SD (σx) = 4

SD(σy) = 3

Concept

Normal distribution is indicated by N(μ, √(σ2x+ σ22))

Calculation

Since X and Y are independent then

⇒ Z = X + Y ~ N(X + Y, (σ2x + σ2y)

⇒ P(Z) = P(X + Y)  ~ N(130, (42 + 32)

⇒ N(130, 25)

N(μ, √(σ2x+ σ22) is N(130, 5)

Random Variables Basics Question 9:

A random variable X has the density function f(x)=K11+x2, where - < x < . Then the value of K is

  1. π
  2. 1/π
  3. 1/2π

Answer (Detailed Solution Below)

Option 2 : 1/π

Random Variables Basics Question 9 Detailed Solution

Concept:

If f(x) is probability density function for random variable x then,

f(x)dx=1

Calculation:

We are given a probability density function

f(x)=K11+x2forx(,)

f(x)dx=K1+x2dx

=K[tan1x]+=1

=K[π2(π2)]=1

⇒ K(π) = 1

K=1π

Random Variables Basics Question 10:

Let X be a random variable that is uniformly chosen from the set of positive odd numbers less than 100. The expectation, E[X], is

  1. 30
  2. 50
  3. 25
  4. Insufficient data

Answer (Detailed Solution Below)

Option 2 : 50

Random Variables Basics Question 10 Detailed Solution

E[X]=1+3+5...9950=250050=50
Get Free Access Now
Hot Links: teen patti pro teen patti master apk best teen patti dhani teen patti master 2024 teen patti bonus