Summation MCQ Quiz - Objective Question with Answer for Summation - Download Free PDF

Last updated on Mar 12, 2025

Latest Summation MCQ Objective Questions

Summation Question 1:

Let \(x=\frac{1}{5+\frac{1}{6+\frac{1}{5+\frac{1}{6+\ldots \ldots . . \infty}}}} .\) Which of the following equals x?

  1. \(\frac{1+5 \sqrt{5}}{62}\)
  2. \(\frac{1-5 \sqrt{5}}{62}\)
  3. \(-3+\sqrt{10.2}\)
  4. \(3+\sqrt{10.2}\)

Answer (Detailed Solution Below)

Option 4 : \(3+\sqrt{10.2}\)

Summation Question 1 Detailed Solution

\(x=\frac{1}{5+\frac{1}{6+x}}\)

\(\Rightarrow x=\frac{6+x}{31+5 x}\)

\(\Rightarrow 5 x^{2}+31 x=x+6\)

\(\Rightarrow 5 x^{2}+30 x-6=0\)

\(\Rightarrow x=\frac{-30 \pm \sqrt{900+120}}{10}=-3 \pm \sqrt{10.2}\)

The continued fraction has to be positive.

Therefore, We reject the negative value.

Summation Question 2:

The given series \(\mathop \sum \limits_{n = 1}^\infty \frac{{{{\left( { - 1} \right)}^{n - 1}}n}}{{5n - 1}}\)

  1. Convergent

  2. Divergent
  3. Oscillatory
  4. None of these

Answer (Detailed Solution Below)

Option 3 : Oscillatory

Summation Question 2 Detailed Solution

Concept:

A series in which the terms are alternatively positive or negative is called an alternating series.

Liebnitz’s series:

An alternating series u1 – u2 + u3 – u4 + … converges if

(i) Each term is numerically less than its preceding term,

(ii) \(\mathop {\lim }\limits_{n \to \infty } {u_n} = 0\)

If \(\mathop {\lim }\limits_{n \to \infty } {u_n} \ne 0\), the given series is oscillatory.

Calculation:

Given series is \(\mathop \sum \limits_{n = 1}^\infty \frac{{{{\left( { - 1} \right)}^{n - 1}}n}}{{5n - 1}}\)

Now \({u_n} = \frac{n}{{5n - 1}} \)

⇒ \({u_n} - {u_{n - 1}} = \frac{n}{{5n - 1}} - \frac{{n - 1}}{{5n - 8}} = \frac{{ - 2n-1}}{{\left( {5n - 1} \right)\left( {5n - 8} \right)}}\) < 0

So each term is numerically less than its preceding term.

Now limit,

\(\mathop {\lim }\limits_{n \to \infty } {u_n} = \mathop {\lim }\limits_{n \to \infty } \frac{n}{{5n - 1}} = \frac{1}{2}\)

⇒ \(\mathop {\lim }\limits_{n \to \infty } {u_n} \ne 0\)

Series is oscillatory

Summation Question 3:

Test for convergence \(\rm \Sigma \frac{\sqrt{5n^2-5n+1}}{7n^3-7n^2+2} \)

  1. Convergent 
  2. Divergent 
  3. Neither Convergent nor Divergent 
  4. None of these

Answer (Detailed Solution Below)

Option 1 : Convergent 

Summation Question 3 Detailed Solution

Given:

\(\rm \Sigma \frac{\sqrt{5n^2-5n+1}}{7n^3-7n^2+2} \)

Concept used:

Limit Comparision test:

if an and bn are two positive series such that \(\underset{n \rightarrow \infty}{L t} \frac{a_n}{b_n} = c \) 

where c > 0 and finite then, either Both series converges or diverges together

P - Series test: 

\(\frac{1}{n^p }\)is convergent for p > 1 and divergent for p ≤  1

Calculations:

nth term of the given series = un = \(\rm \Sigma \frac{\sqrt{5n^2-5n+1}}{7n^3-7n^2+2} \)

Let \(\rm v_n=\frac{1}{n^2}\)

\(\rm \displaystyle Lt_{n\rightarrow\infty}\frac{u_n}{v_n}=\displaystyle Lt_{n\rightarrow\infty}\left[\frac{n\sqrt{5-\frac{5}{n}+\frac{1}{n^2}}}{n^3\left(7-\frac{7}{n}+\frac{2}{n^3}\right)}\times\frac{n^2}{1}\right] \)

\(\rm =\displaystyle Lt_{n\rightarrow\infty}\left[\frac{\sqrt{5-\frac{5}{n}+\frac{1}{n^2}}}{\left(7-\frac{7}{n}+\frac{2}{n^3}\right)}\right]=\frac{\sqrt5}{7}\ne0 \)

∴ By comparison test, Σun and Σvn both converge or diverge.

But Σvn is convergent. [p series test  - p = 2 > 1]

 ∴ Σun is convergent.

Summation Question 4:

Test for convergence \(\rm \displaystyle \Sigma_{n=1}^{\infty}\left(\frac{5^n+3}{6^n+1}\right)^{1/2}\)

  1. Convergent 
  2. Divergent 
  3. Neither Convergent nor Divergent
  4. None of these

Answer (Detailed Solution Below)

Option 1 : Convergent 

Summation Question 4 Detailed Solution

Given:

\(\rm \displaystyle \Sigma_{n=1}^{\infty}\left(\frac{5^n+3}{6^n+1}\right)^{1/2} \)

Concept used:

Limit Comparision test:

if an and bn are two positive series such that \(\underset{n \rightarrow \infty}{L t} \frac{a_n}{b_n} = c \)  where c > 0 and finite then, either Both series converge or diverge together

P - Series test: 

\(\frac{1}{n^p }\)is convergent for p > 1 and divergent for p ≤  1

Calculations:
 
\(\rm u_n=\left[\frac{5^n\left(1+\frac{3}{5^n}\right)}{6^n\left(1+\frac{1}{6^n}\right)}\right]^{1/2} \)
 
Take \(\rm v_n=\sqrt{\frac{5^n}{6^n}} \)
 

\(\rm \frac{u_n}{v_n}=\left(\frac{1+\frac{3}{5^n}}{1+\frac{1}{6^n}}\right)^{1/2} \)

\(\rm \displaystyle Lt_{n\rightarrow \infty}\frac{u_n}{v_n}=1\ne0 \) ;

∴ By comparison test, Σun and Σvn behave the same way.

But Σvn = \(\rm Σ_{n=1}^{\infty}\left(\frac{5}{6}\right)^{n/2}=\sqrt{\frac{5}{6}}+\frac{5}{6}+\left(\frac{5}{6}\right)^{3/2}+.... \) which is a geometric series with common ratio \(\rm \sqrt{\frac{5}{6}}\) which is less than 1.

∴ Σvn is convergent.

Hence Σun is convergent.

Summation Question 5:

Let α = 1+ 42 + 82 + 13+ 19+ 262 + ........... upto 10 terms and \(β=\sum_{n=1}^{10} \mathrm{n}^4\). If 4α - β = 55k + 40, then k is equal to ___________.

Answer (Detailed Solution Below) 353

Summation Question 5 Detailed Solution

Calculation

α = 12 + 42 + 82 …. 

⇒ tn = an2 + bn + c 

⇒ 1 = a + b + c 

⇒ 4 = 4a + 2b + c 

⇒ 8 = 9a + 3b + c 

On solving we get, \(\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{3}{2}, \mathrm{c}=-1\)

⇒ \(\alpha=\sum_{n=1}^{10}\left(\frac{n^2}{2}+\frac{3 n}{2}-1\right)^2\)

⇒ \(4 \alpha=\sum_{n=1}^{10}\left(n^2+3 n-2\right)^2, \beta=\sum_{n=1}^{10} n^4 \)

⇒ \(4 \alpha-\beta=\sum_{n=1}^{10}\left(6 n^3+5 n^2-12 n+4\right)=55(353)+40\)

On comparing

  k = 353

Top Summation MCQ Objective Questions

If an AP is 13, 11, 9……, then find the 50th term of that AP. 

  1. (-90)
  2. (-56)
  3. (-112)
  4. (-85)

Answer (Detailed Solution Below)

Option 4 : (-85)

Summation Question 6 Detailed Solution

Download Solution PDF

Given,

The given AP is 13, 11, 9……

Formula:

Tnt = a + (n – 1)d

a = first term

d = common term

Calculation:

a = 13

d = 11 – 13

d = (-2)

T50 = 13 + (50 – 1) × (-2)

⇒ T50 = 13 + 49 × (-2)

⇒ T50 = 13 – 98

∴ T50 = -85

The sum of the series 1 + 2(a2 + 1) + 3(a2 + 1)2 + 4(a2 + 1)3 + ........... will be:

  1. \(\frac 1 {a^4}\)
  2. 1
  3. \(-\frac 1 {a^2}\)
  4. -1

Answer (Detailed Solution Below)

Option 1 : \(\frac 1 {a^4}\)

Summation Question 7 Detailed Solution

Download Solution PDF

Concept:

a + ar + ar2 + ar3 +….. 

Sum of the above infinite geometric series:

\(=\frac{a}{1-r}\)

Analysis:

Given:

1 + 2(a2 + 1) + 3(a2 + 1)2 + 4(a2 + 1)3 + ......

let x = (a2 + 1)

The series now becomes

S = 1 + 2x + 3x2 + 4x3 + ......  ----(1)

By multiplying x on both sides we get

xS = x + 2x2 + 3x3 + 4x4 + ...... ----(2)

Subtracting (1) and (2), we get

S(1 - x) = 1 + x + x2 + x3 + ..... ---(3)

The right hand side of (3) forms infinite geometric series with a = 1, r = x

∴ S(1 - x) = \(\frac{1}{1-x}\)

\(\Rightarrow S = \frac{1}{(1-x)^2}\)

putting the value of x, we get

\(\Rightarrow S = \frac{1}{(1- a^2 - 1)^2}\)

\(\Rightarrow S = \frac{1}{a^4}\)

What is the sum of the first 12 terms of an arithmetic progression if the first term is 5 and last term is 38?

  1. 73
  2. 258
  3. 107
  4. 276

Answer (Detailed Solution Below)

Option 2 : 258

Summation Question 8 Detailed Solution

Download Solution PDF

Formula used:

Sum of A.P. = n/2{first term + last term}

Calculation:

Number of terms = n = 12

⇒ Sn = 12/2{5 + 38}

⇒ Sn = 6{43}

⇒ Sn = 258

The sum of first five multiples of 3 is

  1. 45
  2. 55
  3. 65
  4. 75

Answer (Detailed Solution Below)

Option 1 : 45

Summation Question 9 Detailed Solution

Download Solution PDF

Given:

The first five multiples of 3

Concept:

Multiples = A multiple is a number that can be divided by another number a certain number of time without a remainder

Calculation:

⇒ The first five multiple of 3 = (3 × 1), (3 × 2), (3 × 3), (3 × 4), (3 × 5) = 3, 6, 9, 12, and 15

⇒ The sum of the multiple = 3 + 6 + 9 + 12 + 15 = 45

∴ The required result will be 45.

Identify the next number in the sequence.

1, 2, 4, 7, 11, _____

  1. 14
  2. 16
  3. 12
  4. 10

Answer (Detailed Solution Below)

Option 2 : 16

Summation Question 10 Detailed Solution

Download Solution PDF

The pattern followed here is –

F1 Shubanshi Ravi 03.11.21 D1

Hence 16 will complete the series.

Find the sum of given arithmetic progression 8 + 11 + 14 + 17 upto 15 terms

  1. 436
  2. 435
  3. 335
  4. 500

Answer (Detailed Solution Below)

Option 2 : 435

Summation Question 11 Detailed Solution

Download Solution PDF

Shortcut Trick

Formula Used:

Average = (Sum of observations)/(Number of observations)

Last term = a + (n - 1)d

Calculation: 

The above series is in arithmetic progression so the middlemost term 8th term will be the average

⇒ 8th term = 8 + (8 - 1) × 3 = 29

⇒ Sum of the series = 29 × 15 = 435

∴ The sum of the above series is 435  

 

Additional Information

We can avoid this above (29 × 15) multiplication by digit sum Method and option

The digit sum of 29 is  (2 + 9) ⇒ (11) ⇒ (2) and 15 is (1 + 5) = 6 

⇒ 2 × 6 = 12 ⇒ (1 + 2) ⇒ 3 

Now check the options whose digit sum will be 3 there is only option 2 whose Digit sum is 3 

∴ 435 is the right answer

 

Traditional Method: 

Given:

Arithmetic progression 8 + 11 + 14 + 17 upto 15 terms

Formula Used: 

Sum of arithmetic progression = n[2a + (n - 1)d]/2

Calculation:

Sum of 1st 15 terms = 15[2 × 8 + (15-1)3]/2

⇒ (15 × 58)/2

⇒ 435

∴ 435 is the right answer

The sequence \(\left\) is

  1. Convergent
  2. Divergent to ∞
  3. Divergent to -∞
  4. None of the above

Answer (Detailed Solution Below)

Option 3 : Divergent to -∞

Summation Question 12 Detailed Solution

Download Solution PDF

Concept:

The Nth term test

If \(\lim_{n\rightarrow ∞ }\left ( \sum_{n=0}^{∞ }a_{n} \right )=L\), where L is any tangible number other than zero. Then, \(\left ( \sum_{n=0}^{∞ }a_{n} \right )\) diverges.

This is also called the Divergence test.

Calculation:

We have, \(\left\)

\(\Rightarrow \sum_{n=1}^{∞ } log\left ( \frac{1}{n} \right )\)

\(\Rightarrow \lim_{n \to ∞ }\left [\sum_{n=1}^{∞ } log\left ( \frac{1}{n} \right ) \right ]\)

\(\Rightarrow \lim_{n \to ∞ }log\left ( \frac{1}{n} \right )\)

So, as n → ∞, \(\frac{1}{n}\) → 0

\(\Rightarrow \lim_{n \to ∞ }log\left ( \frac{1}{n} \right ) = -∞ \neq 0\)

Thus, our series diverges to -∞ by the nth term test.

Hence, The sequence \(\left\) is divergent to -∞.

If S1, S2,.... Sn are the sums of n infinite geometrical series whose first terms are 1, 2, 3, .... n and common ratios are  \(\frac{1}{2},\frac{1}{3}.\frac{1}{4},...,\frac{1}{{n + 1}}\) , then (S1 + S2 + S3 + ... + Sn) = ?

  1. \( \frac{1}{2}n(n + 2)\)
  2. \( \frac{1}{3}n(n + 2)\)
  3. \( \frac{1}{2}n(n + 3)\)
  4. \( \frac{1}{3}n(n + 3)\)

Answer (Detailed Solution Below)

Option 3 : \( \frac{1}{2}n(n + 3)\)

Summation Question 13 Detailed Solution

Download Solution PDF

Given:
Series 1 = \( 1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...\)

Series 2 = \( 2+2\times\frac{1}{3}+2\times\frac{1}{3^2}+2\times\frac{1}{3^3}+...\)

...

Series n = \( n+n\times\frac{1}{n+1}+n\times\frac{1}{(n+1)^2}+n\times\frac{1}{(n+1)^3}+...\)

Concept:
Sum of an infinite G.P. series, S = \( \frac{a}{1-r}\) , when |r| < 1

Sum of an A.P. series, SAP \(\frac{n(a+l)}{2}\) , where, \(l\) = last term of series

Calculation:

For Series 1, a = 1, and r = \(\frac{1}{2}\)
∴ S\(\frac{a}{1-r}\) = \(\frac{1}{1-\frac{1}{2}}\)
⇒ S1 = 2

Similarly, for Series 2, a = 2 and r = \(\frac{1}{3}\)
∴ S1 = \(\frac{2}{1-\frac{1}{3}}\)
⇒ S2 = 3

Similarly,

S3 = 4

S4 = 5, ...

Sn = n + 1

So, S1, S2, S3, ... , Sn is an Arithmetic Progression (A.P.),

For A.P.,

a = S1 = 2

n = n
\(l\) = Sn = n + 1,

Therefore,
(S1 + S2 + S3 + ... + Sn) = \( \frac{n(a+l)}{2} = \frac{n(2+n+1)}{2}\)

∴ S1 + S2 + S3 + ... + Sn ) = \(\frac{n(n+3)}{2}\)

What is the sum of the first 16 terms of an arithmetic progression if the first term is -9 and last term is 51?

  1. 97
  2. 336
  3. 57
  4. 108

Answer (Detailed Solution Below)

Option 2 : 336

Summation Question 14 Detailed Solution

Download Solution PDF

GIVEN:

First term a = – 9

Last term l = 51

Number of term n = 16

FORMULAE USED:

Sum = n/2 × (a + l)

CALCULATION:

⇒ 16/2 × (- 9 + 51) = sum

∴ Sum = 336

If ai > 0 for i = 1, 2, 3,..,n and a1, a2, a3, ...an = 1 then the greatest value of (1 + a1)(1 + a2)... (1 + an) is:

  1. 22n
  2. 2n
  3. 1
  4. \(2^{\frac{n}{2}}\)

Answer (Detailed Solution Below)

Option 2 : 2n

Summation Question 15 Detailed Solution

Download Solution PDF

Let the given expansion be f(n)

f(n) = (1 + a1)(1 + a2)... (1 + an)

Also given, a1 = a= a3 = ... = an = 1

Consider for n = 2

f(2) = (1 + a1)(1 + a2)

f(2) = (1 + 1)(1 + 1) = 22

Consider for n = 5

f(5) = (1 + a1)(1 + a2)(1 + a3)(1 + a4)(1 + a5)

f(5) = (1 + 1)(1 + 1)(1 + 1)(1 + 1)(1 + 1) = 25

Similary for n times, it is given as

f(n) = (1 + 1)(1 + 1) ...... (1 + 1) = 2n

(1 + a1)(1 + a2)... (1 + an) = 2n

Get Free Access Now
Hot Links: teen patti casino apk teen patti royal teen patti gold teen patti app