Latus Rectum MCQ Quiz in मल्याळम - Objective Question with Answer for Latus Rectum - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 21, 2025

നേടുക Latus Rectum ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Latus Rectum MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Latus Rectum MCQ Objective Questions

Top Latus Rectum MCQ Objective Questions

Latus Rectum Question 1:

The length of the latus-rectum of the ellipse, whose foci are (2, 5) and (2, –3) and eccentricity is \(\frac{4}{5}\) , is

  1. \(\frac{6}{5}\)
  2. \(\frac{50}{3}\)
  3. \(\frac{10}{3}\)
  4. \(\frac{18}{5}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{18}{5}\)

Latus Rectum Question 1 Detailed Solution

Calculation:

 
qImage68299b6d2f7d0099bb2e0a89
Center C = \((\frac{2+2}{2}, \frac{5 +(-3)}{2}) = (2,1)\)

Distance between foci: 

⇒ 2c = \(\sqrt{(2-2)^2 + (5-(-3))^2} = 8 \)

⇒ c = 4

Also e = a/c ⇒ a = c/e = \(\frac{4}{\frac{4}{5}} = 5\)

Now ba− c25 − 16 9

⇒ b = 3

Length of latus rectum =  \(\frac{2b^2}{a} = \frac{2 \times 9}{5} = \frac{18}{5}\)

Hence, the correct answer is Option 4.

Latus Rectum Question 2:

What is the sum of the major and minor axes of the ellipse whose eccentricity is 4/5 and length of latus rectum is 14.4 unit?

  1. 32 unit
  2. 48 unit
  3. 64 unit
  4. None of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 64 unit

Latus Rectum Question 2 Detailed Solution

Concept:

Standard equation of an ellipse: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) (a > b)

Coordinates of foci = (± ae, 0)

Eccentricity (e) = \(\sqrt {1 - {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) ⇔ a2e2 = a2 – b2

Length of latus rectum = \(\rm \frac {2b^2}{a}\)

Length of major axis =2a and Length of minor axis = 2b

 

Calculation: 

Here,  e = 4/5 =\(\sqrt {1 - {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \)

Squaring both sides, we get

16/25 = \(\rm 1 - \frac {b^2}{a^2}\)

∴ (b2 / a2) = 1 - 16/25 =  9/25 ....(1)

 

Latus rectus 2b2 / a = 14.4

⇒ b2 / a = 7.2

Puting above value in (1),

 7.2/ a = 9/25

⇒ a = 20

Now, b2 = 7.2 × 20 = 144

⇒ b = 12

 

Sum of major and minor axes = 2a + 2b

= 2(20) + 2(12)

= 64 

Hence, option (3) is correct.

Latus Rectum Question 3:

What is the length of the latus rectum of the ellipse 25x2 + 16y2 = 400 ?

  1. 25/2
  2. 25/4
  3. 16/5
  4. 32/5
  5. None of the above

Answer (Detailed Solution Below)

Option 4 : 32/5

Latus Rectum Question 3 Detailed Solution

Concept:

Equation

\(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) (a > b)

 \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) (a < b)

Length of Latus rectum

\(\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}\)

\(\frac{{2{{\rm{a}}^2}}}{{\rm{b}}}\)

 

Calculation:

25x2 + 16y2 = 400

\( \Rightarrow \frac{{25{{\rm{x}}^2}}}{{400}} + \frac{{16{{\rm{y}}^2}}}{{400}} = 1\)

\( \Rightarrow \frac{{{{\rm{x}}^2}}}{{16}} + \frac{{{{\rm{y}}^2}}}{{25}} = 1\)

Comparing, with standard equation: a = 4 ; b = 5

Since ( a < b )

\({\rm{Length\;of\;latus\;rectum}}:\frac{{2{{\rm{a}}^2}}}{{\rm{b}}} = \frac{{2 \times 4 \times 4}}{5} = \frac{{32}}{5}\)

Latus Rectum Question 4:

The length of latus rectum of the ellipse 3x2 + y2 -12x + 2y + 1 = 0 is

  1. \(2\sqrt 3\)
  2. 12
  3. \(\frac{4}{\sqrt 3}\)
  4. \(\frac{3}{\sqrt 2}\)
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\frac{4}{\sqrt 3}\)

Latus Rectum Question 4 Detailed Solution

Concept:

Standard Equation of ellipse: \(\frac{{{\rm{\;}}{{\rm{x}}^2}}}{{{{\rm{a}}^2}}} + \frac{{{{\rm{y}}^2}}}{{{{\rm{b}}^2}}} = 1\)

Length of latus rectum = 2b2/a, when a > b and 2a2/b, when a < b

Calculation:

3x2 + y2 -12x + 2y + 1 = 0

⇒ 3(x2 - 4x + 4) – 12 + (y2 + 2y + 1) = 0

⇒ 3(x – 2)2 – 12 + (y + 1)2 = 0

⇒ 3(x – 2)2 + (y + 1)2 = 12

\( \Rightarrow \frac{{3{{\left( {{\rm{x}} - 2} \right)}^2}}}{{12}} + \frac{{{{\left( {{\rm{y}} + 1} \right)}^2}}}{{12}} = 1\)                                  (Divide by 12)

\( \Rightarrow \frac{{{{\left( {{\rm{x}} - 2} \right)}^2}}}{4} + \frac{{{{\left( {{\rm{y}} + 1} \right)}^2}}}{{12}} = 1\)

\( \Rightarrow \frac{{{{\left( {{\rm{x}} - 2} \right)}^2}}}{{{2^2}}} + \frac{{{{\left( {{\rm{y}} + 1} \right)}^2}}}{{{{\left( {2\sqrt 3 } \right)}^2}}} = 1\)

∴ a2 = 22 and b2 = (2√3)2

Here a < b

So, length of latus rectum = 2a2/b

\(\frac{{2\left( 4 \right)}}{{2\sqrt 3 }}\)

\(\frac{4}{\sqrt 3}\) units

Hence, option (3) is correct.

Latus Rectum Question 5:

If the latus rectum of an ellipse is equal to half of the minor axis, then what is its eccentricity?

  1. 2 / √3
  2. 1 / √3
  3. √3 / 2
  4. 1 / √2
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : √3 / 2

Latus Rectum Question 5 Detailed Solution

Concept:

The equation of ellipse is \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2} = 1\;(a>b)\)

length of Latus rectum of ellipse = \(\rm \frac{2b^2}{a}\)

Length of minor axis = 2b.

 eccentricity = \(e = \sqrt {1 - (\frac{b}{a})^2}\)

Calculations:

Given, the latus rectum of an ellipse is equal to half of the minor axis.

Suppose, the equation of ellipse is \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2} = 1\)

length of Latus rectum of ellipse = \(\rm \frac{2b^2}{a}\)

Length of minor axis = 2b.

Given, the latus rectum of an ellipse is equal to half of the minor axis

⇒ \(\rm \frac{2b^2}{a} = b\)

⇒ \(\rm \frac{b}{a} = \frac{1}{2}\)

If the equation of ellipse is \(\rm \frac{x^2}{a^2}+\frac{y^2}{b^2} = 1\) then eccentricity = \(e = \sqrt {1 - (\frac{b}{a})^2}\)

⇒ \(e = \sqrt {1 - (\frac{1}{2})^2}\)

⇒ e = \(\rm\frac {\sqrt {3}}{2}\)

If the latus rectum of an ellipse is equal to half of the minor axis, then what is its eccentricity e = \(\rm\frac {\sqrt {3}}{2}\)

 

Latus Rectum Question 6:

Let the foci of a hyperbola be (1, 14) and (1, –12). If it passes through the point (1, 6), then the length of its latus-rectum is :

  1. \(\frac{25}{6}\)
  2. \(\frac{24}{5}\)
  3. \(\frac{288}{5}\)
  4. \(\frac{144}{5}\)
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\frac{288}{5}\)

Latus Rectum Question 6 Detailed Solution

Calculation

 

qImage67a855fcf5f95e0b74bdba30

be = 13, b = 5

a2 = b2 (e2 – 1)

= b2 e2 – b2

= 169 – 25 = 144

\(\ell(\mathrm{LR})=\frac{2 \mathrm{a}^{2}}{\mathrm{~b}}=\frac{2 \times 144}{5}=\frac{288}{5}\)

Hence option 3 is correct

Latus Rectum Question 7:

Consider an ellipse, whose centre is at the origin and its major axis is along the x-axis. If its eccentricity is \(\dfrac{3}{5}\) and the distance between its foci is \(6\), then the area (in sq. units) of the quadrilateral inscribed in the ellipse, with the vertices as the vertices of the ellipse, is.

  1. \(80\)
  2. \(8\)
  3. \(40\)
  4. \(32\)

Answer (Detailed Solution Below)

Option 3 : \(40\)

Latus Rectum Question 7 Detailed Solution

The required area is in the shape of kite.

Area of kite \(=\dfrac{1}{2}\times \text{(Product of its diagonal)}\)

\(\Rightarrow \text{Eccentricity }(e)=\dfrac{3}{5}\)

\(\Rightarrow \text{Distance between foci }=6\)

\(\therefore 2ae=6\)

\(\Rightarrow ae=3\)

\(\Rightarrow a\times\dfrac{3}{5}=3\)

\(\therefore a=5\)

Now,

\(\Rightarrow b^2=a^2-(ae)^2\)

\(\Rightarrow b^2=(5)^2-(3)^2\)

\(\Rightarrow b^2=25-9\)

\(\Rightarrow b^2=16\)

\(\therefore b=4\)

\(\Rightarrow \text{Length of major axis }(AA')=2a\)

\(=2\times 5\)

\(=10\)

\(\Rightarrow \text{Length of minor axis }(BB')=2b\)

\(=2\times 4\)

\(=8\)

\(\Rightarrow \text{Required area }=\text{Area of kite }ABA'B'\)

\(=\dfrac{1}{2}\times (AA')\times (BB')\)

\(=\dfrac{1}{2}\times 10\times 8\)

\(=40\)


qImage671b428cc1b0029fca7a3a98

Latus Rectum Question 8:

Let the length of the latus rectum of an ellipse with its major axis along x-axis and center at the origin, be \(8\). If the distance between the foci of this ellipse is equal to the length of its minor axis, then when one of the following points lies on it?

  1. \( (4 \sqrt{3}, 2 \sqrt{3}) \)
  2. \( (4 \sqrt{3}, 2 \sqrt{2}) \)
  3. \( (4 \sqrt{2}, 2 \sqrt{2}) \)
  4. \( (4 \sqrt{2}, 2 \sqrt{3}) \)

Answer (Detailed Solution Below)

Option 2 : \( (4 \sqrt{3}, 2 \sqrt{2}) \)

Latus Rectum Question 8 Detailed Solution

\(\dfrac{2b}{a}^2 = 8\)

and

\(2ae = 2b\)

\(\Longrightarrow \dfrac{b}{a} = e\ and\ 1 - e^2 = e^2 \Longrightarrow e = \dfrac{1}{\sqrt{2}}\)

\(\Longrightarrow b = 4\sqrt{2}\ and\ a + 8\)

so equation of ellipse is

\(\dfrac{x^2}{64} + \dfrac{y^2}{32} = 1\)

Latus Rectum Question 9:

The length of latus rectum of the ellipse \(\rm \frac{x^2}{100} + \frac{y^2}{75} = 1\) is

  1. 10
  2. 12
  3. 15
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : 15

Latus Rectum Question 9 Detailed Solution

Concept:

Standard equation of an ellipse: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) (a > b)

  • Coordinates of foci = (± ae, 0)
  • Eccentricity (e) = \(\sqrt {1 - {\rm{\;}}\frac{{{{\rm{b}}^2}}}{{{{\rm{a}}^2}}}} \) ⇔ a2e2 = a2 – b2
  • Length of Latus rectum = \(\rm \frac{2b^2}{a}\)

 

Calculation:

Given: \(\rm \frac{x^2}{100} + \frac{y^2}{75} = 1\)

Compare with the standard equation of an ellipse: \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\)

So, a2 = 100 and b2 = 75

∴ a = 10

Length of latus rectum =  \(\rm \frac{2b^2}{a}\)\(\rm \frac{2 \times 75}{10} = 15\)

Latus Rectum Question 10:

What is the length of the latus rectum of the ellipse 25x2 + 16y2 = 400 ?

  1. 25/2
  2. 25/4
  3. 16/5
  4. 32/5
  5. None of these

Answer (Detailed Solution Below)

Option 4 : 32/5

Latus Rectum Question 10 Detailed Solution

Concept:

Equation

\(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) (a > b)

 \(\frac{{{\rm{\;}}{{\bf{x}}^2}}}{{{{\bf{a}}^2}}} + \frac{{{{\bf{y}}^2}}}{{{{\bf{b}}^2}}} = 1\) (a < b)

Length of Latus rectum

\(\frac{{2{{\rm{b}}^2}}}{{\rm{a}}}\)

\(\frac{{2{{\rm{a}}^2}}}{{\rm{b}}}\)

 

Calculation:

25x2 + 16y2 = 400

\( \Rightarrow \frac{{25{{\rm{x}}^2}}}{{400}} + \frac{{16{{\rm{y}}^2}}}{{400}} = 1\)

\( \Rightarrow \frac{{{{\rm{x}}^2}}}{{16}} + \frac{{{{\rm{y}}^2}}}{{25}} = 1\)

Comparing, with standard equation: a = 4 ; b = 5

Since ( a < b )

\({\rm{Length\;of\;latus\;rectum}}:\frac{{2{{\rm{a}}^2}}}{{\rm{b}}} = \frac{{2\ \times\ 4\ \times\ 4}}{5} = \frac{{32}}{5}\)
Get Free Access Now
Hot Links: teen patti octro 3 patti rummy teen patti real money app teen patti real cash withdrawal teen patti yes