Convergence and Divergence of Series MCQ Quiz - Objective Question with Answer for Convergence and Divergence of Series - Download Free PDF

Last updated on Mar 30, 2025

Latest Convergence and Divergence of Series MCQ Objective Questions

Convergence and Divergence of Series Question 1:

The series [11p12p+13p14p+...]:

  1. converges for p > 0
  2. converges for p < 0
  3. diverges for p > 0
  4. diverges for p < 0
  5. Not Attempted

Answer (Detailed Solution Below)

Option 1 : converges for p > 0

Convergence and Divergence of Series Question 1 Detailed Solution

Concept:

Alternating series test:

Series of the form S = (1)nan or S = (1)n+1an is called alternating series. The series converges if the following conditions satisfy:

  • limnan=0
  • an+1 ≤ an 

Calculation:

Given series S = 11p12p+13p14p+...

⇒ S = n=1(1)n+11np

∴ an1np

Now, limnan = limn1np = 0

Now, an+1an

1(n+1)p1np

(nn+1)p

⇒ an+1 ≤ an, if p > 0

Hence, the series 11p12p+13p14p+... converges for p > 0.

Convergence and Divergence of Series Question 2:

Find radius of convergence of 1 + x + x2/2! + ....?

  1. infinite
  2. 10
  3. 5
  4. 0

Answer (Detailed Solution Below)

Option 1 : infinite

Convergence and Divergence of Series Question 2 Detailed Solution

concept- 

If series is anxn  then to find radius of convergence we have two formulas 

1. 1R=limnan+1an 

2. 1R=limn(an)1n

Explanation -

Here, Given series is 1+x+x22!+..... 

we can write as n=0xnn! 

Here, an=1n!  

Using Ratio Test,

 1R=limnan+1an=(n!)(n+1)!  

1R=limn1(n+1)=0

Here, R = 

Therefore, Correct Option is Option 1).

Convergence and Divergence of Series Question 3:

Find the radius of convergence of series 1 + x + x2 + x3 + .....?

  1. 1
  2. 0
  3. 3
  4. 2

Answer (Detailed Solution Below)

Option 1 : 1

Convergence and Divergence of Series Question 3 Detailed Solution

concept- 

If series is anxn  then to find radius of convergence we have two formulas 

1. 1R=limnan+1an 

2. 1R=limn(an)1n 

Explanation- 

Here given series 1+x+x2+x3+....... 

and series be like n=0xn 

Here, an=1 

So,  1R=limnan+1an = 1

Radius of Convergence is 1. 

Therefore, Correct Option is Option 1).

Convergence and Divergence of Series Question 4:

The series [11p12p+13p14p+...]:

  1. converges for p > 0
  2. converges for p < 0
  3. diverges for p > 0
  4. diverges for p < 0

Answer (Detailed Solution Below)

Option 1 : converges for p > 0

Convergence and Divergence of Series Question 4 Detailed Solution

Concept:

Alternating series test:

Series of the form S = (1)nan or S = (1)n+1an is called alternating series. The series converges if the following conditions satisfy:

  • limnan=0
  • an+1 ≤ an 

Calculation:

Given series S = 11p12p+13p14p+...

⇒ S = n=1(1)n+11np

∴ an1np

Now, limnan = limn1np = 0

Now, an+1an

1(n+1)p1np

(nn+1)p

⇒ an+1 ≤ an, if p > 0

Hence, the series 11p12p+13p14p+... converges for p > 0.

Convergence and Divergence of Series Question 5:

Let ΣUn be a convergent series of positive terms and let ΣVbe a divergent series of positive terms. Then

  1. The sequence {Un} converges to 0
  2. The sequence {Vn} diverges to ∞ 
  3. The sequence {Un} is convergent and the sequence {Vn} is divergent
  4. Both the sequences {Un} and {Vn} are convergent

Answer (Detailed Solution Below)

Option 1 : The sequence {Un} converges to 0

Convergence and Divergence of Series Question 5 Detailed Solution

Explanation -

Given that -

Let ΣUn be a convergent series of positive terms and let ΣVbe a divergent series of positive terms. 

so Uis converges to 0 because ΣUn be a convergent series of positive terms.

So option(1) is true.

ΣVbe a divergent series of positive terms. 

let V= 1/n

Clearly, ΣVn is divergent series but Vis convergent sequence and converges to 0.

Hence Option (2) and (3) are false.

let V= 3 + (-1)n

Then the ΣVn is divergent series but Vis not convergent sequence.

Hence Option(4) is false.

Top Convergence and Divergence of Series MCQ Objective Questions

The series [11p12p+13p14p+...]:

  1. converges for p > 0
  2. converges for p < 0
  3. diverges for p > 0
  4. diverges for p < 0

Answer (Detailed Solution Below)

Option 1 : converges for p > 0

Convergence and Divergence of Series Question 6 Detailed Solution

Download Solution PDF

Concept:

Alternating series test:

Series of the form S = (1)nan or S = (1)n+1an is called alternating series. The series converges if the following conditions satisfy:

  • limnan=0
  • an+1 ≤ an 

Calculation:

Given series S = 11p12p+13p14p+...

⇒ S = n=1(1)n+11np

∴ an1np

Now, limnan = limn1np = 0

Now, an+1an

1(n+1)p1np

(nn+1)p

⇒ an+1 ≤ an, if p > 0

Hence, the series 11p12p+13p14p+... converges for p > 0.

Convergence and Divergence of Series Question 7:

Find radius of convergence of 1 + x + x2/2! + ....?

  1. infinite
  2. 10
  3. 5
  4. 0

Answer (Detailed Solution Below)

Option 1 : infinite

Convergence and Divergence of Series Question 7 Detailed Solution

concept- 

If series is anxn  then to find radius of convergence we have two formulas 

1. 1R=limnan+1an 

2. 1R=limn(an)1n

Explanation -

Here, Given series is 1+x+x22!+..... 

we can write as n=0xnn! 

Here, an=1n!  

Using Ratio Test,

 1R=limnan+1an=(n!)(n+1)!  

1R=limn1(n+1)=0

Here, R = 

Therefore, Correct Option is Option 1).

Convergence and Divergence of Series Question 8:

Find the radius of convergence of series 1 + x + x2 + x3 + .....?

  1. 1
  2. 0
  3. 3
  4. 2

Answer (Detailed Solution Below)

Option 1 : 1

Convergence and Divergence of Series Question 8 Detailed Solution

concept- 

If series is anxn  then to find radius of convergence we have two formulas 

1. 1R=limnan+1an 

2. 1R=limn(an)1n 

Explanation- 

Here given series 1+x+x2+x3+....... 

and series be like n=0xn 

Here, an=1 

So,  1R=limnan+1an = 1

Radius of Convergence is 1. 

Therefore, Correct Option is Option 1).

Convergence and Divergence of Series Question 9:

The series [11p12p+13p14p+...]:

  1. converges for p > 0
  2. converges for p < 0
  3. diverges for p > 0
  4. diverges for p < 0

Answer (Detailed Solution Below)

Option 1 : converges for p > 0

Convergence and Divergence of Series Question 9 Detailed Solution

Concept:

Alternating series test:

Series of the form S = (1)nan or S = (1)n+1an is called alternating series. The series converges if the following conditions satisfy:

  • limnan=0
  • an+1 ≤ an 

Calculation:

Given series S = 11p12p+13p14p+...

⇒ S = n=1(1)n+11np

∴ an1np

Now, limnan = limn1np = 0

Now, an+1an

1(n+1)p1np

(nn+1)p

⇒ an+1 ≤ an, if p > 0

Hence, the series 11p12p+13p14p+... converges for p > 0.

Convergence and Divergence of Series Question 10:

Consider the power series n=0 anxn, where a0 = 0 and an = (sin(n!))/n! for n ≥ 1. Let R be the radius of convergence of the power series. Then

  1. R ≥ 1
  2. R ≥ 2π
  3. R ≤ 4π
  4. R ≥ π

Answer (Detailed Solution Below)

Option :

Convergence and Divergence of Series Question 10 Detailed Solution

Concept:

Radius of convergent of a series  n=0 anxn is given by 1R=limnan+1an

Explanation:

Here  an = (sin(n!)) / n! 

So 1R=limnan+1an

1R = limnsin(n+1)!(n+1)!×n!sinn!

1R=0 ⇒ R = ∞ 

Hence options (1), (2) and (4) are correct.

Convergence and Divergence of Series Question 11:

The series [11p12p+13p14p+...]:

  1. converges for p > 0
  2. converges for p < 0
  3. diverges for p > 0
  4. diverges for p < 0
  5. Not Attempted

Answer (Detailed Solution Below)

Option 1 : converges for p > 0

Convergence and Divergence of Series Question 11 Detailed Solution

Concept:

Alternating series test:

Series of the form S = (1)nan or S = (1)n+1an is called alternating series. The series converges if the following conditions satisfy:

  • limnan=0
  • an+1 ≤ an 

Calculation:

Given series S = 11p12p+13p14p+...

⇒ S = n=1(1)n+11np

∴ an1np

Now, limnan = limn1np = 0

Now, an+1an

1(n+1)p1np

(nn+1)p

⇒ an+1 ≤ an, if p > 0

Hence, the series 11p12p+13p14p+... converges for p > 0.

Convergence and Divergence of Series Question 12:

If un=n+1n,Vn=n4+1n2, then

  1. Σn=1un converges but Σn=1vn diverges
  2. Σn=1un diverges Σn=1vn converges
  3. Σn=1un and Σn=1vn both converges
  4. Σn=1un and Σn=1vn both diverges

Answer (Detailed Solution Below)

Option 3 : Σn=1un and Σn=1vn both converges

Convergence and Divergence of Series Question 12 Detailed Solution

Explanation:

Here, it is given that

un=n+1n

and vn=n4+1n2

un=n+1n

n+1nn+1+n×n+1+n

=(n+1)2(n)2n+1+n=n+1nn+1+n=1n+1+n

Now, taking auxiliary series vn=1n

⇒ limnunvn=1n+1+n1/n=nn+1+n=1

finite and non-zero.

∴ Σvn=1n1/2 is a p series as p=12

Hence, Σvn is divergent and Σun is also divergent and 

vn=n4+1n2

=n4+1n2n4+1+n2×n4+1+n2

=1n4+1+n2

Now, taking auxiliary series Σvn=1n2

∵ limnunvn=limnn2n4+1+n2=1

finite and non-zero

∵ Σvn=1n2 is a p-series at p = 2

Σvn is convergent and 

Hence, Σun is also convergent.

Convergence and Divergence of Series Question 13:

The series 212+322+432+542+....is

  1. conditional convergent 
  2. absolutely convergent
  3. divergent 
  4. None of these

Answer (Detailed Solution Below)

Option 1 : conditional convergent 

Convergence and Divergence of Series Question 13 Detailed Solution

Explanation:

Let the given series be denoted by Σun, then

Σ|un| = 212+322+432+542+....

Σn+1n2=Σvn (say)

Compare this series Σvn with the auxiliary series,

Σwn = Σ1/n

Then, limnvnwn=limn[n+1n2×n1]=limn(1+1n)=1

Which is finite quantity.

Hence Σun and Σvn are either both convergent or both divergent.

But Σwn = Σ1n is divergent as the series Σ1n2 divergent. if ρ = 1

Hence, the series Σvn is divergent.

Also, in the series Σun, we find that its term are alternately positive and negative,

its terms are continuously decreasing and

limnun=limn(n+1n2)

=limn(1n+1n2)=0

Thus, all condition of Leibnitz's test are satisfied and as Σun is convergent.

Hence, the given series Σun is conditionally convergent.

Convergence and Divergence of Series Question 14:

If Σan is convergent series of positive terms then Σan / (1 + an) is:

  1. Sum is not finite
  2. None of these above
  3. Convergent
  4. Divergent

Answer (Detailed Solution Below)

Option 3 : Convergent

Convergence and Divergence of Series Question 14 Detailed Solution

Concept:

Convergence of series:

For any sequence {an} of positive terms, such that limnan = 0, Σan is a convergent series .

Calculation:

Given that Σan is a convergent series of positive terms.

We know that the sequence {an} approaches zero as n approaches infinity. This is a necessary condition for the convergence of a series of positive terms.

Now, let's consider the series an1+an ​ ​ 

an×1an(1+an)×1an

11+1an

Since, limnan = 0, as  Σan​ converges, we have limn11+1an = 0.

Therefore, each term in the series an1+an ​approaches zero as n approaches infinity.

∴ The series Σan / (1 + an)​ converges.

Correct answer is Option (3)

Convergence and Divergence of Series Question 15:

Let ΣUn be a convergent series of positive terms and let ΣVbe a divergent series of positive terms. Then

  1. The sequence {Un} converges to 0
  2. The sequence {Vn} diverges to ∞ 
  3. The sequence {Un} is convergent and the sequence {Vn} is divergent
  4. Both the sequences {Un} and {Vn} are convergent

Answer (Detailed Solution Below)

Option 1 : The sequence {Un} converges to 0

Convergence and Divergence of Series Question 15 Detailed Solution

Explanation -

Given that -

Let ΣUn be a convergent series of positive terms and let ΣVbe a divergent series of positive terms. 

so Uis converges to 0 because ΣUn be a convergent series of positive terms.

So option(1) is true.

ΣVbe a divergent series of positive terms. 

let V= 1/n

Clearly, ΣVn is divergent series but Vis convergent sequence and converges to 0.

Hence Option (2) and (3) are false.

let V= 3 + (-1)n

Then the ΣVn is divergent series but Vis not convergent sequence.

Hence Option(4) is false.

Get Free Access Now
Hot Links: teen patti gold old version teen patti master downloadable content real cash teen patti teen patti master download teen patti real cash 2024