Calculus of Variations MCQ Quiz - Objective Question with Answer for Calculus of Variations - Download Free PDF

Last updated on Mar 21, 2025

Latest Calculus of Variations MCQ Objective Questions

Calculus of Variations Question 1:

The extremal of the functional

J(y)=01[3(y)2xy]dx, y(0) = 0, y(1) = 1, y ∈ C2[0, 1] is

  1. y(x)=x336+3736
  2. y(x)=x336+3736x
  3. y(x)=x3363736x
  4. y(x)=x336+3736

Answer (Detailed Solution Below)

Option :

Calculus of Variations Question 1 Detailed Solution

Concept: 

If J(y)=01[F(x,y,y)]dx, then its extremum is

Fyddx(Fy)=0

Explanation:

J(y)=01[3(y)2xy]dx,  y(0) = 0, y(1) = 1,  yC2[0,1]

According to the question 

F(x,y,y)=3(y)2xy

Fyddx(Fy) = 0

⇒ xddx(6y) = 0

⇒ x + 6y'' = 0

⇒ y=x6

after integrating with respect to x, we get

y=x212+c

again integrating with respect to x, we get

y(x)=x336+cx+d where c and d are constants of integration

now, y(0)=d=0

and y(1)=136+c=1c=3736

Hence our extremum would be

 y(x)=x336+3736x

Hence option (2) is correct

Calculus of Variations Question 2:

Let us consider the functional I[y] = 0l(y2k2y2)dx with boundary condition y(0) = y(l) = 0. Which of the following statements are true?

  1. The functional has no extremal if k is zero.
  2. The functional has a unique extremal for k2 > 0 and l=nπk where n ∈ ℤ+
  3. The functional has infinitely many extremals for k2 > 0 if l is a multiple of πk
  4. The functional is independent of the value of k for any given l

Answer (Detailed Solution Below)

Option :

Calculus of Variations Question 2 Detailed Solution

Concept: 

If J(y)=∈t01[F(x,y,y)]dx, then its extremum is

Fyddx(Fy)=0

Explanation:

Here F(x, y, y') = y2k2y2

Using 

Fyddx(Fy)=0

-2k2y - ddx(2y) = 0

-2k2y - 2y'' = 0

y'' + k2y = 0 

General solution is

y = a cos kx + b sin kx

y(0) = 0 ⇒ a = 0

y(l) = 0 ⇒ b sin kl = 0 ⇒ sin kl = 0 (if b ≠ 0)

⇒  kl = nπ ⇒ l=nπk , n ∈ ℤ+

for k2 > 0 and l is a multiple of πk, there are infinitely many extremals because n can take any positive integer value, leading to different sinusoidal solutions

The functional has infinitely many extremals for k2 > 0 if l is a multiple of πk

(3) is true and (2) is false.

The functional is dependent on k, as k determines the frequency of the sinusoidal solutions.

(4) is false.

If k = 0 then F(x, y, y') = y'2

then

Fyddx(Fy)=0

0 - ddx(2y)=0

y'' = 0

y = ax + b

y(0) = y(l) = 0

⇒ b = 0 and al = 0 i.e., a = 0

so, y = 0

Hence, there are no non-trivial extremals..

(1) is true.

Calculus of Variations Question 3:

Which of the following is/are the extremal of the functional I[y(x)] = 01xyydx, y(0) = 0, y(1) = 1

  1. y(x) = x2
  2. y(x) = x3
  3. y(x) = sin x
  4. has no extremal.

Answer (Detailed Solution Below)

Option :

Calculus of Variations Question 3 Detailed Solution

Concept:

For the functional I[y(x)] = x1x2F(x,y,y)dx, y(x2) = y2 and y(x1) = y1

The Euler equation is

Fyddx(Fy) = 0

Explanation:

Here F(x, y, y') = xyy'

Using Euler's equation,

xy' - ddx(xy) = 0

⇒ xy' - y - xy' = 0

⇒ y = 0

It satisfies y(0) = 0 but does not satisfy y(1) = 1.

So, the functional has no extremal.

(4) is true.

Calculus of Variations Question 4:

The extremal of the functional 13y(3x+y)dx, y(1) = 1, y(3) = 4 is 

  1. y = x + 3
  2. y = x2
  3. y = x2 + 1
  4. no extremal

Answer (Detailed Solution Below)

Option 4 : no extremal

Calculus of Variations Question 4 Detailed Solution

Concept:

For the functional I[y(x)] = x1x2F(x,y,y)dx, y(x2) = y2 and y(x1) = y1

The Euler equation is

Fyddx(Fy) = 0

Explanation:

Here F(x, y, y') = y(3x+y)

Using Euler's equation,

3x + 2y - ddx(0) = 0

⇒ y = -3x/2

Using

y(1) = 1, y(3) = 4

and y(1) = 1

⇒ 1 = -3/2 which is not true.

Hence the functional has no extremal.

Option (4) is true.

Calculus of Variations Question 5:

 Let I[y(x)] = ab1+[y(x)]2dx then which of the following is the Euler Lagrange equation

  1. yy(x)(1+[y(x)]2)3/2
  2. y(x)(1+[y(x)]2)3/2 = 0
  3. y(x)(1+[y(x)]2)3/2= 0
  4. none of the above

Answer (Detailed Solution Below)

Option 2 : y(x)(1+[y(x)]2)3/2 = 0

Calculus of Variations Question 5 Detailed Solution

Concept:

For the functional I[y(x)] = x1x2F(x,y,y)dx, y(x2) = y2 and y(x1) = y1

The Euler equation is

Fyddx(Fy) = 0

Explanation:

Here F(x, y, y') = 1+[y(x)]2

Using Euler's equation,

0- ddx(121+[y(x)]2.2y(x)) = 0

⇒ ddx(y(x)1+[y(x)]2) = 0

⇒ y(x)(1+[y(x)]2)3/2 = 0

Option (2) is true.

Top Calculus of Variations MCQ Objective Questions

Consider the variational problem (P)

J(y(x)) = 01[(y')2 − y|y| y' + xy] dx, y(0) = 0, y(1) = 0.

Which of the following statements is correct?

  1. (P) has no stationary function (extremal).
  2. y ≡ 0 is the only stationary function (extremal) for (P).
  3. (P) has a unique stationary function (extremal) y not identically equal to 0.
  4. (P) has infinitely many stationary functions (extremal).

Answer (Detailed Solution Below)

Option 3 : (P) has a unique stationary function (extremal) y not identically equal to 0.

Calculus of Variations Question 6 Detailed Solution

Download Solution PDF

Concept:

Euler-Lagrange Equation: The extremal of the functional J[y] = abf(x, y, y')dx satisfies fy - ddx(fy) = 0

Explanation:

J(y(x)) = 01[(y')2 − y|y| y' + xy] dx, y(0) = 0, y(1) = 0

If y > 0 then

f(x, y, y') = (y')2 − y2y' + xy

So using  fy - ddx(fy) = 0 we get

-2yy' + x - ddx(2y' - y2) = 0

- 2yy' + x - 2y'' +2yy' = 0

y'' = x/2....(i)

If y < 0 then

f(x, y, y') = (y')2 + y2y' + xy

So using  fy - ddx(fy) = 0 we get

2yy' + x - ddx(2y' + y2) = 0

 2yy' + x - 2y'' - 2yy' = 0

y'' = x/2....(ii)

Hence in both case we get

y'' = x/2

Integrating 

y' = x24+c1

Integrating again

y = x312+c1x+c2

Using  y(0) = 0, y(1) = 0 we get

c2 = 0 and 0 = 112 + c1 ⇒ c1 = - 112

Hence solution is

y = x312x12

Option (3) is correct

The extremal of the functional

J(y)=01[2(y)2+xy]dx, y(0) = 0, y(1) = 1, y ∈ C2[0, 1] is

  1. y=x212+11x12
  2. y=x33+2x23
  3. y=x27+6x7
  4. y=x324+23x24

Answer (Detailed Solution Below)

Option 4 : y=x324+23x24

Calculus of Variations Question 7 Detailed Solution

Download Solution PDF

Concept: If J(y)=01[F(x,y,y)]dx, then its extremum is

Fyddx(Fy)=0

Explanation:

J(y)=01[2(y)2+xy]dx,  y(0)=0, y(1) = 1,  yC2[0,1]

According to the question 

F(x,y,y)=2(y)2+xy

Fyddx(Fy) = 0

(2(y)2+xy)yddx((2(y)2+xy)y) = 0

⇒ xddx(4y) = 0

⇒ x - 4y'' = 0

y=x4

after integrating  with respect to x, we get

y=x28+c

again integrating with respect to x, we get

y(x)=x324+cx+d

where c and d are constants of integration

now, y(0)=d=0

and y(1)=124+c=1c=2324

Hence our extremum would be y(x)=x324+23x24

Hence option (4) is correct

Calculus of Variations Question 8:

Which of the following is an extremal of the functional I(y)=11(y22xy)dx that satisfies the boundary conditions y(-1) = -1 and y(1) = 1?

  1. x35+6x5
  2. x58+9x8
  3. x36+7x6
  4. x37+8x7

Answer (Detailed Solution Below)

Option 3 : x36+7x6

Calculus of Variations Question 8 Detailed Solution

Concept:

Euler Equation:

Let us examine the functional 

I(y)=x1x(F(x,y,y))dx

For an extreme value, the boundary points of the admissible curves being fixed  y( x1 ) = y1 and y( x2 ) = y2 

then Fy - ddxFy) = 0 is called the Euler equation

Calculation:

Given: F( x , y , y' ) = y'2 -2xy

Now by Euler's equation 

Fy - ddx(Fy) = 0

-2x - 2y'' = 0 

y'' = - x 

Now integrating on both sides with respect to x, we get 

y' = x22 + A 

Now again, integrating on both sides with respect to x, we get 

y( x) = x36+ Ax + B . . . . . . (1)

where A and B are constant.

Using boundary conditions y(1) = 1 and y( -1) = -1

Now from equation 1, we get 

y(1) = 16+ A + B 

1 = 16+ A +B 

A + B = 76 . . . . . . (2)

y( -1) =  16 - A + B

-1 = 16 - A + B

- A + B = 76 . . . . . . (3)

Adding equations 2 and 3, we get

B = 0 

Putting the value of B in equation (2), we get 

A = 76

Now from equation (1), 

y(x)  =  x36+76x

Option (3) is correct

Calculus of Variations Question 9:

The cardinality of the set of extremals of 

J[y]=01(y)2dx,

subject to 

y(0) = 1, y(1) = 6, 01ydx=3

is

  1. 0
  2. 1
  3. 2
  4. countably infinite

Answer (Detailed Solution Below)

Option 2 : 1

Calculus of Variations Question 9 Detailed Solution

Concept:

A typical isoperimetric problem is to find an extremum of 

I(y) = abF(x,y,y)dx subject to y(a) = y1, y(b) = y2, J(y) = abG(x,y,y)dx=L then the extrema satisfy the Euler-Lagrange's equation

Hyddx(Hy) = 0

where H = F + λH

Explanation:

J[y]=01(y)2dx, y(0) = 1, y(1) = 6,01ydx=3

Let H = y2+λy

Then using

Hyddx(Hy) = 0

⇒ λ - ddx(2y) = 0

⇒ 2y'' = λ

⇒ y'' = λ/2

Integrating both sides we get

y' = λ2x + a

Again integrating

⇒ y = λx24 + ax + b

y(0) = 1, y(1) = 6

⇒ b = 1

and

6 = λ/4 + a + 1

⇒ 5 = λ/4 + a

⇒ λ + 4a = 20.....(i)

So, we get y = λx24 + ax + 1

Also, 01ydx=3

⇒ 01(λx24+ax+1)dx = 3

⇒ [λx312+ax22+x]01 = 3

⇒ λ12+a2+1 = 3

⇒ λ12+a2 = 2

⇒ λ + 6a = 24....(ii)

Subtracting (i) from (ii) we get

2a = 4 ⇒ a = 2

Putting a = 2 in (i) we get

λ + 8 = 20 ⇒ λ = 12

Hence extremal is

y = 3x2 + 2x + 1

Hence the functional has only one extremal.

Therefore the cardinality of the set of extremals is 1

(2) is correct

Calculus of Variations Question 10:

Let y = ϕ(x) be the extremizing function for the functional I(y)=01y2(dydx)2dx, subject to y(0) = 0, y(1) = 1. Then ϕ(1/4) is equal to 

  1. 1/2
  2. 1/4
  3. 1/8
  4. 1/12

Answer (Detailed Solution Below)

Option 1 : 1/2

Calculus of Variations Question 10 Detailed Solution

Concept:

We know that if I(y) = 0a F dx where F is function of y and y' only then F satisfy Fy(Fy) = c ...(1)

Explanation:

Here F = y2(dydx)2 = y2y'2

So using (1)​we get

y2y'- y'2y2y' = c

 - y2y'2= c 

⇒ yy' = c'

⇒ y dy = c' dx

Integrating both side

y2 / 2 = c'x + d 

Substituting y(0) = 0 we get

d = 0

and substituting y(1) = 1 we get

1 / 2 = c'

Hence we get 

y22=12x ⇒ y2 = x ⇒ y = √(x)

Therefore we get ϕ(x) = √(x). Hence ϕ(1/4) = √(1/4) ⇒ ϕ(1/4) = 1/2

Option (1) is correct   

Calculus of Variations Question 11:

The extremum of the functional I[y(x)] = 0ay10dx, y' > 0 & a > 0 attains 

  1. Strong maxima
  2. Weak maxima
  3. Strong minima
  4. Weak minima

Answer (Detailed Solution Below)

Option 4 : Weak minima

Calculus of Variations Question 11 Detailed Solution

Concept:

The extremum of functional I[y(x)] = x1x2f(x,y,y)dx, y(x1) = y1, y(x2) = yattains 

(i) strong maxima if fyy < 0 for all y'

(ii) weak maxima if fyy < 0 for some y'

(iii) strong minima if fyy > 0 for all y'

(iv) weak minima if fyy > 0 for some y'

Explanation:

I[y(x)] = bay10dx, y(0) = 0, y(a) = b

So f = y'10

fy=10y9

So fyy=90y8 > 0 if y' > 0

Hence the extremum of the functional attains weak minima.

Option (4) is correct

Calculus of Variations Question 12:

If J(y) = 23(y2+2y5y+y10)dx, y(0) = e2 , then external is

  1. 1=y3(4x+1e6)
  2. 1=y4(4x2+1e8)
  3. 1=y4(4x+1e8)
  4. 1=y2(4x+1e8)

Answer (Detailed Solution Below)

Option 3 : 1=y4(4x+1e8)

Calculus of Variations Question 12 Detailed Solution

Concept:

The extremal of the functional J(y) = abf(x,y,y)dx, y(a) = y1, y(b) = arbitrary then satisfy Lagrange equation

fyddx(fy) = 0 and fy|x=b = 0

Explanation:

J(y) = 23(y2+2y5y+y10)dx,  y(0) = e2 . Then

fy|x=3 = 0

⇒ 2y' + 2y5 = 0

⇒ y' + y5 = 0

⇒ dyy5=dx

Integrating we get -

1y4=4x4c

Now, y(0) = e2 ⇒ -1/4e8 = c

Hence 1y4=4x+1e8 ⇒ 1=y4(4x+1e8)

(3) is correct

Calculus of Variations Question 13:

The infimum of 01(u(t))2dt of function

{uC1[0,1]} such that u(0) = 0 and {max[0,1]|u|=1} is equal to

  1. 0
  2. 1/2
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Calculus of Variations Question 13 Detailed Solution

Concept:

The extremal of the functional J(u)=t1t2F(t,u,u)dt, u(t1) = u1, u(t2) = u2, will satisfy Euler equation

Fuddt(Fu) = 0

If F is independent of t and u then u = at + b is the extremize function.

Explanation:

J(u) = 01(u(t))2dt, u(0) = 0 and {max[0,1]|u|=1} 

F(t, u, u') = u2 independent of t and u

So u = at + b is the general solution

u(0) = 0 implies b = 0

Hence u(t) = at

{max[0,1]|u|=1} i.e., at x = 1, u = 1

So, 1 = a × 1 ⇒ a = 1

Solution is u(t) = t ⇒ u'(t) = 1

Therefore infimum value

01(u(t))2dt = 0112dt = [t]01 = 1

So infimum value is 1

(3) is correct

Calculus of Variations Question 14:

The cardinality of the set of extremals of 

J[y]=01(y)2dx,

subject to 

y(0) = 2, y(1) = 5, 01ydx=4  is

  1. 0
  2. 1
  3. 2
  4. countably infinite

Answer (Detailed Solution Below)

Option 2 : 1

Calculus of Variations Question 14 Detailed Solution

Concept:

A typical isoperimetric problem is to find an extremum of 

I(y) = abF(x,y,y)dx subject to y(a) = y1, y(b) = y2, J(y) = abG(x,y,y)dx=L then the extrema satisfy the Euler-Lagrange's equation

Hyddx(Hy) = 0

where H = F + λH

Explanation:

J[y]=01(y)2dx, y(0) = 2, y(1) = 5,01ydx=4

Let H = y2+λy

Then using

Hyddx(Hy) = 0

⇒ λ - ddx(2y) = 0

⇒ 2y'' = λ

⇒ y'' = λ/2

Integrating both sides we get

y' = λ2x + a

Again integrating

⇒ y = λx24 + ax + b

y(0) = 2, y(1) = 5

⇒ b = 2

and

5 = λ/4 + a + 2

⇒ 3 = λ/4 + a

⇒ λ + 4a = 12.....(i)

So, we get y = λx24 + ax + 2

Also, 01ydx=4

⇒ 01(λx24+ax+2)dx = 4

⇒ [λx312+ax22+2x]01 = 4

⇒ λ12+a2+2 = 4

⇒ λ12+a2 = 2

⇒ λ + 6a = 24....(ii)

Subtracting (i) from (ii) we get

2a = 12 ⇒ a = 6

Putting a = 6 in (i) we get

λ + 24 = 12 ⇒ λ = -12

Hence extremal is

y = -3x2 + 6x + 1

Hence the functional has only one extremal.

Therefore the cardinality of the set of extremals is 1

(2) is correct

Calculus of Variations Question 15:

For any two continuous functions f, g : ℝ → ℝ, define

fg(t)=0tf(s)g(ts)ds.

Which of the following is the value of f ⋆ g(t) when f(t) = exp(-t) and g(t) = sin(t)?  

  1. 12[exp(t)+sin(t)cos(t)].
  2. 12[exp(t)+sin(t)cos(t)].
  3. 12[exp(t)sin(t)cos(t)].
  4. 12[exp(t)+sin(t)+cos(t)].

Answer (Detailed Solution Below)

Option 1 : 12[exp(t)+sin(t)cos(t)].

Calculus of Variations Question 15 Detailed Solution

Explanation:

fg(t)=0tf(s)g(ts)ds.

f(t) = exp(-t) = e-t and g(t) = sin(t)

So, fg(t)=0tessin(ts)ds

Let 

I = fg(t)=0tessin(ts)ds

I = [essin(ts)]0t0t(es)(cos(ts))ds

I = 0 + sin t - 0tescos(ts)ds

I = sin t - {[escos(ts)]0t+0tessin(ts)ds}

I = sin t - e-t - cos t - I 

2I = sin t - e-t - cos t

I = 12[exp(t)+sin(t)cos(t)]

Hence f⋆g(t) = 12[exp(t)+sin(t)cos(t)]

Hence, option (1) is correct

Get Free Access Now
Hot Links: teen patti bodhi teen patti apk download teen patti master golden india teen patti game online