Lagrange's Mean Value Theorem MCQ Quiz - Objective Question with Answer for Lagrange's Mean Value Theorem - Download Free PDF

Last updated on Jul 21, 2025

Latest Lagrange's Mean Value Theorem MCQ Objective Questions

Lagrange's Mean Value Theorem Question 1:

Let f and g be twice differentiable functions on R such that  

f''(x) = g''(x) + 6x

f'(1) = 4g'(1) - 3 = 9 

f(2) = 3g(2) = 12 

Then which of the following is NOT true ?

  1. g(–2) –f(–2) = 20
  2. If –1 < x < 2, then |f(x) – g(x)| < 8 
  3. |f'(x) - g'(x)| < 6 ⇒ -1 < x < 1| 
  4. There exists x0 ∈ (1,32) such that f(x0) = g(x0)

Answer (Detailed Solution Below)

Option 2 : If –1 < x < 2, then |f(x) – g(x)| < 8 

Lagrange's Mean Value Theorem Question 1 Detailed Solution

Calculation: 

f(x)=g(x)+6x...(i)

f(1)=4g(1)3=9...(ii)

f(2)=3g(2)=12...(iii)

By integrating (1) 

⇒ f'(x) = g'(x) + 6x22 + C

At x = 1, 

⇒ f'(1) = g'(1) + 3 + C

⇒ 9 = 4 + 3 + C C = 3 

∴ f'(x) = g'(x) + 3x2 + 3

Again by integrating,

⇒ f(x) = g(x) + 3x23 + 3x + D

At x = 2, 

⇒ f(2) = g(2) + 8 + 3(2) + D

⇒ 12 = 4 + 8 + 6 + D D = –6

So, f(x) = g(x) + x3 + 3x - 6 

At x = –2, 

⇒ g(2)f(2)=20 (Option (1) is true) 

Now, for – 1 < x , 2 

⇒ h (x) = f(x) - g(x) = x3 + 3x - 6 

⇒ h'(x) = 3x2 + 3 

⇒ h(x)↑ 

So, h(–1) < h(x) < h(2) 

⇒ – 10 < h(x) < 8 

⇒ |h(x)|<10 

Option 1 is True

Now, h'(x) = f'(x) – g'(x) = 3x2 + 3 

If |h'(x)| < 6 |3x2 + 3| < 6 

⇒ 3x2 + 3 < 6 

⇒ x2 < 1 

⇒ \(\rm -1

Option 3 is True 

If x ∈ (–1, 1) |f'(x) – g'(x)| < 6 

option (3) is true and now to solve 

⇒ f(x) – g(x) = 0 

⇒ x3 + 3x – 6 = 0

h(x) = x3 + 3x - 6

here, = h(1) ve and h(32) = +ve

So there exists x0(1,32) such that f(x0) = g(x0)

(option (4) is true)   

Hence, the correct answer is Option 2. 

Lagrange's Mean Value Theorem Question 2:

For the function f(x) = x+1x, c ∈ [1, 3], the value of c for mean value theorem is:

  1. 1
  2. √3
  3. 2
  4. None of these.
  5. 7

Answer (Detailed Solution Below)

Option 2 : √3

Lagrange's Mean Value Theorem Question 2 Detailed Solution

Concept:

Lagrange’s Mean Value Theorem:
If a function f is defined on the closed interval [a, b] satisfying:

  • The function f is continuous on the closed interval [a, b].
  • The function f is differentiable on the open interval (a, b).

Then there exists a value x = c such that f'(c) = f(b)f(a)ba.

 

Calculation:

The given function f(x) = x+1x is both differentiable and continuous in the interval [1, 3].

f'(x) = 11x2

By the Mean Value Theorem, there exists a c ∈ [1, 3], such that:

f'(c) = f(b)f(a)ba

⇒ 11c2=f(3)f(1)31

⇒ 11c2=(3+13)(1+11)2

⇒ 11c2=432=23

⇒ 1c2=123=13

⇒ c = √3.

Lagrange's Mean Value Theorem Question 3:

For the function f(x) = x + x-1, x ∈ [1, 3], the value of C for mean value theorem is:

  1. √3
  2. 1
  3. √2
  4. √5

Answer (Detailed Solution Below)

Option 1 : √3

Lagrange's Mean Value Theorem Question 3 Detailed Solution

Concept

Mean Value Theorem: If a function f(x) is continuous on the closed interval [a, b] and differentiable on the open interval (a, b), then there exists at least one number C in the interval (a, b) such that:

f(b)f(a)ba=f(C)

Calculation

Given: f(x)=x+x1, x[1,3]

 

Here, a=1, b=3

f(a)=f(1)=1+11=1+1=2

f(b)=f(3)=3+31=3+13=103

f(x)=1x2=11x2

Now, f(3)f(1)31=f(C)

103231=11C2

432=11C2

23=11C2

1C2=123=13

C2=3

C=±3

Since C(1,3), we take the positive value.

C=3

Hence option 1 is correct.

Lagrange's Mean Value Theorem Question 4:

For all x[0,2024] assume that f(x) is differentiable, f(0) = -2 and f(x)5. Then the least possible value of f(2024) is

  1. 10,120
  2. 10,118
  3. 10,122
  4. 2024

Answer (Detailed Solution Below)

Option 2 : 10,118

Lagrange's Mean Value Theorem Question 4 Detailed Solution

Calculation

Given:

For all x[0,2024]f(x) is differentiable.

f(0)=2 and f(x)5.

By the Mean Value Theorem, there exists c(0,2024) such that

f(c)=f(2024)f(0)20240

f(c)=f(2024)(2)2024

f(2024)=2024f(c)2

Since f(x)5, we have f(c)5.

f(2024)2024×52

f(2024)101202

f(2024)10118

∴ The least possible value of f(2024) is 10118.

Hence option 2 is correct

Lagrange's Mean Value Theorem Question 5:

The value of c for the function f(x) = log x on [1, e] if LMVT can be applied is

  1. e - 2
  2. e + 1
  3. e - 1
  4. e

Answer (Detailed Solution Below)

Option 3 : e - 1

Lagrange's Mean Value Theorem Question 5 Detailed Solution

Concept Used:

Lagrange's Mean Value Theorem (LMVT): If f(x) is continuous on [a, b] and differentiable on (a, b), then there exists a c in (a, b) such that f(c)=f(b)f(a)ba

Calculation

f(x) = log x

⇒ f'(x) = 1/x

a = 1, b = e

f(a) = f(1) = log 1 = 0

f(b) = f(e) = log e = 1

f(c)=f(e)f(1)e1

1c=10e1

1c=1e1

⇒ c = e - 1

∴ The value of c is e - 1.

Hence option 3 is correct

Top Lagrange's Mean Value Theorem MCQ Objective Questions

For the function f(x) = x+1x, c ∈ [1, 3], the value of c for mean value theorem is:

  1. 1
  2. √3
  3. 2
  4. None of these.

Answer (Detailed Solution Below)

Option 2 : √3

Lagrange's Mean Value Theorem Question 6 Detailed Solution

Download Solution PDF

Concept:

Lagrange’s Mean Value Theorem:
If a function f is defined on the closed interval [a, b] satisfying:

  • The function f is continuous on the closed interval [a, b].
  • The function f is differentiable on the open interval (a, b).

Then there exists a value x = c such that f'(c) = f(b)f(a)ba.

 

Calculation:

The given function f(x) = x+1x is both differentiable and continuous in the interval [1, 3].

f'(x) = 11x2

By the Mean Value Theorem, there exists a c ∈ [1, 3], such that:

f'(c) = f(b)f(a)ba

⇒ 11c2=f(3)f(1)31

⇒ 11c2=(3+13)(1+11)2

⇒ 11c2=432=23

⇒ 1c2=123=13

⇒ c = √3.

The value of c in Mean value theorem for the function f(x) = x(x – 2), x ∈ [1, 2] is

  1. 32
  2. 23
  3. 12
  4. 32

Answer (Detailed Solution Below)

Option 1 : 32

Lagrange's Mean Value Theorem Question 7 Detailed Solution

Download Solution PDF

Concept:

Mean value theorem states that if f(x) is continuous over the interval [a, b] and differentiable over the interval (a, b), then there exists at least one c in (a, b) such that f'(c) = f(b)f(a)ba

Calculation:

Given: f(x) = x(x - 2), x ϵ [1, 2]

f'(x) = x - 2 + x

f'(x) = 2x - 2

f'(x) =2(x - 1)

f'(c) = 2(c - 1)

The mean value theorem states that there exists at least one c in (a, b) such that f'(c) = f(b)f(a)ba

Here b = 2 ⇒  f(2) = 2(2 - 2) = 0

a = 1 ⇒  f(1) = 1(1 - 2) = - 1

⇒ 2 (c - 1) = 0(1)21

⇒ 2(c - 1) = 1

⇒ c - 1 = 12

∴ c = 32 ∈ (1, 2)

The correct answer is 3/2.

For the function f(x) = x + 1x, x ∈ [1, 3], the value of c for mean value theorem is

  1. 1
  2. √3
  3. 2
  4. none of these

Answer (Detailed Solution Below)

Option 2 : √3

Lagrange's Mean Value Theorem Question 8 Detailed Solution

Download Solution PDF

Concept:

Mean value theorem states that if f(x) is continuous over the interval [a, b] and differentiable over the interval (a, b) then there exists at least one c in (a, b) such that

f'(c) = f(b)f(a)ba

Calculation:

Given: f(x) = x + 1x, x ϵ [1, 3]

 f'(x) = 1 - 1x2  

The mean value theorem states there exists at least one c in (a, b) such that

f'(c) = f(b)f(a)ba

Here b = 3 ⇒ f(3) = 3 + 13 = 103

a = 1 ⇒  f(1) = 1 + 1 = 2

Now, f'(c) = 103231

 11c2  10632 

 11c2=12×43

 11c2=23

 1c2=123

  1c2 =  13

⇒ c2 = 3

⇒ c = ± √3

∴  c = √3 ∈ (1, 3)

The correct answer is √3.

According to the mean value theorem f(x)=f(b)f(a)ba then

  1. a < xt ≤ b
  2. a ≤ xt < b
  3. a < xt < b
  4. a ≤ xt ≤ b

Answer (Detailed Solution Below)

Option 3 : a < xt < b

Lagrange's Mean Value Theorem Question 9 Detailed Solution

Download Solution PDF

Concept:

Mean Value Theorem: Let f  : [a, b] → R be a continuous function on [a, b] and differentiable on (a, b). Then there exists some c in (a, b) such that

f'(c) = [f(b)f(a)](ba) 

Explanation:

Given that

f(x)=f(b)f(a)ba

According to the mean value theorem, f'(x) will be defined for some value a < xt < b, where f(x) is differentiable.

Hence, correct answer is a < xt < b.

A value of c for which the conclusion of mean value Theorem holds for the function f(x) = loge x on the interval [1, 3] is

  1. 2 log3 e
  2. 12log3e
  3. log3 e
  4. loge 3

Answer (Detailed Solution Below)

Option 1 : 2 log3 e

Lagrange's Mean Value Theorem Question 10 Detailed Solution

Download Solution PDF

Concept:

For mean value theorem in [a, b]

f(c)=f(b)f(a)ba

Calculation:

f(x) = loge x

f(x)=1xf(c)=1c

1c=f(3)f(1)31=loge3loge131

1c=loge32

c=2loge3=2log3e

Let the function, f : [-7, 0] → R be continuous on [−7, 0] and differentiable on (−7, 0). If f(-7)= −3 and f'(𝑥) ≤ 2, for all x ∈ (−7, 0), then for all such functions f, f(−1) + f(0) lies in the interval:

  1. [-6, 20]
  2. (-∞, 20]
  3. (-∞, 11]
  4. [-3, 11]

Answer (Detailed Solution Below)

Option 2 : (-∞, 20]

Lagrange's Mean Value Theorem Question 11 Detailed Solution

Download Solution PDF

Explanation -

f(-7) = -3 and f’(x) ≤ 2

Applying LMVT in [-7, 0], we get

(f(-7) – f(0))/-7 = f’(c) ≤ 2

(-3-f(0))/-7 ≤ 2

f(0) + 3 ≤ 14

f(0) ≤ 11

Applying LMVT in [-7, -1], we get

(f(-7) – f(-1))/(-7 +1) = f’(c) ≤ 2

-3 – f(-1))/-6 = f’(c) ≤ 2

f(-1) + 3 = ≤ 12

f(-1) ≤ 9

Therefore f(-1) + f(0) ≤ 20

Hence Option (2) is correct.

Lagrange's Mean Value Theorem Question 12:

For the function f(x) = x+1x, c ∈ [1, 3], the value of c for mean value theorem is:

  1. 1
  2. √3
  3. 2
  4. None of these.

Answer (Detailed Solution Below)

Option 2 : √3

Lagrange's Mean Value Theorem Question 12 Detailed Solution

Concept:

Lagrange’s Mean Value Theorem:
If a function f is defined on the closed interval [a, b] satisfying:

  • The function f is continuous on the closed interval [a, b].
  • The function f is differentiable on the open interval (a, b).

Then there exists a value x = c such that f'(c) = f(b)f(a)ba.

 

Calculation:

The given function f(x) = x+1x is both differentiable and continuous in the interval [1, 3].

f'(x) = 11x2

By the Mean Value Theorem, there exists a c ∈ [1, 3], such that:

f'(c) = f(b)f(a)ba

⇒ 11c2=f(3)f(1)31

⇒ 11c2=(3+13)(1+11)2

⇒ 11c2=432=23

⇒ 1c2=123=13

⇒ c = √3.

Lagrange's Mean Value Theorem Question 13:

Let f be a twice differentiable function on (1, 6). If f(2) = 8, f'(2) = 5, f'(x) ≥ 1 and f''(x) ≥ 4, for all x ∈ (1, 6) then

  1. f(5) ≤ 10
  2. f'(5) + f''(5) ≤ 20
  3. f(5) + f'(5) ≥ 28
  4. f(5) + f' (5) ≤ 26

Answer (Detailed Solution Below)

Option 3 : f(5) + f'(5) ≥ 28

Lagrange's Mean Value Theorem Question 13 Detailed Solution

Concept

Lagrange mean value theorem (LMVT)

Let f(x) be a function defined in [a, b] such that

f (x) is continuous in [a, b] and differentiable in (a, b)

Then there exists at least one point such that c ∈ (a, b) such that

f(c)=f(b)f(a)ba

Calculation

Given: The function f be a twice differentiable function on (1, 6). 

f(2) = 8, f'(2) = 5, f'(x) ≥ 1, f"(x) ≥ 4, ∀ x ∈ (1, 6)

f(x)=f(5)f(2)524       ----(i)

⇒ f'(5) ≥ 17

f(x)=f(5)f(2)521       ----(ii)

⇒ f(5) ≥ 11

∴ f'(5) + f(5) ≥ 28

Lagrange's Mean Value Theorem Question 14:

The value of c in (0, 2) satisfying the mean value theorem for the function f(x) = x (x - 1)2, x ϵ [0, 2] is equal to

  1. 2/3
  2. 4/3
  3. 4/9
  4. 2/9

Answer (Detailed Solution Below)

Option 2 : 4/3

Lagrange's Mean Value Theorem Question 14 Detailed Solution

Concept

Lagrange mean value theorem (LMVT)

Let f(x) be a function defined in [a, b] such that

f (x) is continuous in [a, b] and differentiable in (a, b)

Then there exists at least one point such that C ∈ (a, b) such that

f(c)=f(b)f(a)ba

Calculation

Given:

f(x) = x(x -1)

⇒ f(0) = 0

f(2) = 2 

⇒  f(0) ≠ f(2)

Thus mean value theorem is applicable

Then, f(x)=f(2)f(0)20

3x24x+1=2020=1

3x24x=0

x(3x4)=0

x=0,x=4/3.

We will take only x = 4/3 ϵ (0, 2) 

Lagrange's Mean Value Theorem Question 15:

In the mean value theorem f(b)f(a)ba=f(c), if a=0,b=12 and f(x) = x(x - 1)(x - 2), the value of c is

  1. 1156
  2. 1+15
  3. 1216
  4. 1+21

Answer (Detailed Solution Below)

Option 3 : 1216

Lagrange's Mean Value Theorem Question 15 Detailed Solution

Concept:

Differentiation formula

ddxxn=nxn1

Calculation:

We have f(a) = f(0) = 0 and f(b) = f(12​) = 38

⇒ f(b)f(a)ba=380120=34

Now we have f(x) = x−3x2+ 2x

⇒ f′(x) = 3x2− 6x + 2

⇒ f′(c) = 3c− 6c + 2

Putting all these value in lagrange's mean value theorem

f(b)f(a)ba=f(c),(a < c, b) We get

 34 = 3c− 6c + 2

⇒ c = 1±216​​

Hence, c = ​​1216.

Get Free Access Now
Hot Links: teen patti noble teen patti gold downloadable content teen patti teen patti master old version